УДК: 681.7.069.223: 621.791.72
Optimizing the process of generating the second harmonic of the radiation of a TEA CO2 laser in a ZnGeP2 crystal
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ковальчук Л.В., Горячкин Д.А., Сергеев В.В., Калинцев А.Г., Калинцева Н.А., Калинин В.П., Грибенюков А.И. Оптимизация процесса генерации второй гармоники излучения ТЕА СО2-лазера в кристалле ZnGeP2 // Оптический журнал. 2012. Т. 79. № 9. С. 14–22.
Koval’chuk L. V., Kalintsev A. G., Gribenyukov A. I., Goryachkin D. A., Sergeev V. V., Kalintseva N. A., Kalinin V. P. Optimizing the process of generating the second harmonic of the radiation of a TEA CO2 laser in a ZnGeP2 crystal [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 14–22.
L. V. Koval’chuk, A. G. Kalintsev, A. I. Gribenyukov, D. A. Goryachkin, V. V. Sergeev, N. A. Kalintseva, and V. P. Kalinin, "Optimizing the process of generating the second harmonic of the radiation of a TEA CO2 laser in a ZnGeP2 crystal," Journal of Optical Technology. 79(9), 538-544 (2012). https://doi.org/10.1364/JOT.79.000538
The creation of a high-intensity source in the 4.6–5.4-µm range is a problem that has attracted the attention of researchers for several decades. This paper describes the optimization of the process of generating the second harmonic of the radiation of a pulse-periodic TEA CO2 laser by choosing a nonlinear crystal and the temporal shape of the laser-pump pulse. Energy-conversion efficiency of up to 20% has been experimentally obtained in a ZnGeP2 crystal with mean power of the radiation in the λ=4.8µm region of up to 0.24 W and a pulse repetition rate of 10 Hz.
TEA CO2 laser, non-linear crystal ZnGeP2 second harmonic generation
OCIS codes: 350.3390
References:2. P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 frequency doubling in ZnGeP2,” Opt. Commun. 110, No. 8, 163 (1994).
3. V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski˘ı, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].
4. L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
5. G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski˘ı, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].
6. R. C. Y. Auyeung, D. M. Zielke, and B. J. Feldman, “Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3 AsSe3,” Appl. Phys. B 48, 293 (1989).
7. N. Menyuk, G. W. Iseler, and A. Mooradian, “High-efficiency high- average-power second-harmonic generation with dGeAs2,” Appl. Phys. Lett. 29, 422 (1976).
8. D. N. Nikogosyan, A. P. Sukhorukov, and M. I. Golove˘ı, “Saturation of second-harmonic generation of laser radiation on carbon dioxide with a transverse discharge,” Kvant. Elektron. (Moscow) 2, 609 (1975). [Sov. J. Quantum Electron. 5, 344 (1975)].
9. J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.
10. G. A. Verozubova and A. I. Gribenyukov, “The growth of ZnGeP2 crystals from the melt,” Kristallografiya 53, 175 (2008). [Crystallogr. Rep. 53, 158 (2008)].
11. “Datasheet Zinc Germanium Phosphide,” www.inrad.com.
12. A. I. Gribenyukov, “Nonlinear-optical ZnGeP2 crystals: retrospective analysis of the technological studies,” Opt. Atm. Okeana 15, 71 (2002).
13. V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].
14. G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski˘ı, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski˘ı, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).
15. D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).
16. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single- and multiple-pulse laser-induced damage in glasses,” Opt. Express 10, 1465 (2002).
17. A. G. Kalintsev, N. A. Kalintseva, V. A. Serebryakov, and A. V. Kopyl’tsov, “Mathematical modelling of multistage parametric frequency converters,” in Abstracts of Reports of the Fourteenth International Conference on Laser Optics, St. Petersburg, 2010, WeR1 p. 45.