УДК: 535-15
Radiation distribution of 3.4-µm immersion LEDs in the far field
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Зотова Н.В., Карандашев С.А., Матвеев Б.А., Ременный М.А., Стусь Н.М. Распределение излучения иммерсионных светодиодов с длиной волны 3,4 мкм в дальнем поле // Оптический журнал. 2012. Т. 79. № 9. С. 60–65.
Zotova N. V., Karandeshev S. A., Matveev B. A., Remennyĭ M. A., Stus’ N.M. Radiation distribution of 3.4-µm immersion LEDs in the far field [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 60–65.
N. V. Zotova, S. A. Karandeshev, B. A. Matveev, M. A. Remennyĭ, and N.M. Stus’, "Radiation distribution of 3.4-µm immersion LEDs in the far field," Journal of Optical Technology. 79(9), 571-575 (2012). https://doi.org/10.1364/JOT.79.000571
This article describes how the far-field radiation distribution and power varies with the geometrical parameters of immersion lenses made from silicon (n¯=3.4) and chalcogenide glass (n¯=2.4) mated with LEDs (λ=3.4µm) based on indium antimonide (n¯=3.5) and estimates the efficiency of using such devices in miniature optical systems.
medium wave LEDs, IR lenses, IR gas analyzers
OCIS codes: 230.6080, 260.3060, 120.3620, 230.0250
References:1. J. W. Chey, P. Sultan, and H. J. Gerritsen, “Resonant photoacoustic detection of methane in nitrogen using a room-temperature infrared light-emitting diode,” Appl. Opt. 26, 3192 (1987).
2. N. P. Esina, N. V. Zotova, I. I. Markov, B. A. Matveev, A. A. Rogachev, N. M. Stus’, and G. N. Talalakin, “Gas analyzer based on semiconductor elements,” Zh. Prikl. Spektrosk. 42, 691 (1985).
3. N. V. Zotova, N. D. Il’inskaya, S. A. Karandashev, B. A. Matveev, M. A. Remenny˘ı, and N. M. Stus’, “Sources of spontaneous emission based on indium arsenide,” Fiz. Tekh. Poluprovodn. 42, 641 (2008). [Semiconductors 42, 625 (2008)].
4. B. A. Matveev, Mid-infrared Semiconductor Optoelectronics, Springer Series in Optical Science (Springer, 2006), pp. 395–428.
5. T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus, “Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs,” Vib. Spectrosc. 51, 289 (2009).
6. M. A. Remenniy, B. A. Matveev, N. V. Zotova, S. A. Karandashev, N. M. Stus’, and N. D. Ilinskaya, “InAs and InAs(Sb)(P) (3–5-μm) immersion-lens photodiodes for portable optic sensors,” Proc. SPIE 6585, 658504 (2007).
7. G. Y. Sotnikova, G. A. Gavrilov, S. E. Aleksandrov, A. A. Kapralov, S. A. Karandashev, B. A. Matveev, and M. A. Remennyy, “Low-voltage CO2-gas sensor based on III–V mid-IR immersion lens diode optopairs: Where we are and how far can we go?” IEE Sensors J. 10, 225 (2010).
8. A. A. Kuznetsov, O. B. Balashov, E. V. Vasil’ev, S. A. Loginov, A. I. Lugovsko˘ı, and E. Ya. Chernyak, “Long-range IR detector of hydrocarbon gases,” Prib. Sis. Uprav. Kont. Diagnos. No. 6, 55 (2003).
9. A. L. Zakge˘ım, N. V. Zotova, N. D. Il’inskaya, S. A. Karandashev, B. A. Matveev, M. A. Remenny˘ı, N. M. Stus’, and A. E. Chernyakov, “Room-temperature broadband InAsSb flip-chip photodiodes with λcutoff = 4.5 μm,” Fiz. Tekh. Poluprovodn. 43, 412 (2009). [Semiconductors 43, 394 (2009)].