УДК: 535.015
Modules for protecting the eyes from laser radiation in observational devices
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Белоусова И.М., Данилов О.Б., Виденичев Д.А., Волынкин В.М., Веденяпина Ж.Б., Кисляков И.М., Муранова Г.А., Муравьева Т.Д., Рыжов А.А. Модули защиты глаз от лазерного излучения в наблюдательных приборах // Оптический журнал. 2013. Т. 80. № 1. С. 24–33.
Belousova I.M., Danilov O.B., Videnichev D.A., Volynkin V.M., Vedeniyapina Zh.B., Kislyakov I.M., Muranova G.A., Muravieva T.D., Ryzhov A.A. Modules for protecting the eyes from laser radiation in observational devices [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 1. P. 24–33.
I. M. Belousova, D. A. Videnichev, I. M. Kislyakov, A. A. Ryzhov, O. B. Danilov, V. M. Volynkin, Zh. B. Vedenyapina, G. A. Muranova, and T. D. Murav’eva, "Modules for protecting the eyes from laser radiation in observational devices," Journal of Optical Technology. 80(1), 18-24 (2013). https://doi.org/10.1364/JOT.80.000018
This paper presents the results of the development of modules for protecting the eyes from laser radiation in the visible and near-IR regions. A description is given of a nonlinear-optical module with a medium based on a suspension of carbon nanoparticles in a silicone liquid, a multispectral interference filter having narrow reflection bands with minimal transmission at wavelengths of 355, 532, and 1064 nm, and a system adequate for observational devices with embedded protective elements. The combined use of the protective modules makes it possible to reduce the energy at the output of the system to a level no greater than 200 pJ when the input energy is 50 mJ and the pulse-repetition rates are as much as 10 Hz, thus ensuring the safety of the observer’s eyes.
protection from laser radiation, nonlinear-optical laser radiation limiter, nonlinear-optical properties of carbon nanoparticles suspensions
Acknowledgements:This work was carried out with the support of the Russian Foundation for Basic Research, Grants 10-02-05017-b, 11-03-00115-a, and 11-03-01106-a. The work was also supported by FGUP S. I. Vavilov State Optical Institute Scientific Manufacturing Corp., S. I. Vavilov stipend.
OCIS codes: 190.4360 , 190.4400, 190.2640
References:1. D. H. Sliney, “Retinal injury from laser radiation,” Nonlinear Opt. 21, Nos. 1–4, 1 (1999).
2. K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100 (1992).
3. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228 (1995).
4. D. Vincent, S. Petit, and S. L. Chin, “Optical limiting studies in a carbon suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41, 2944 (2002).
5. L. Vivien, E. Anglaret, D. Riehl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, and F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317 (1999).
6. S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510 (2000).
7. F. E. Hernández, W. Shensky III, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, “Viscosity dependence of optical limiting in carbon black suspensions,” Appl. Opt. 41, 1103 (2002).
8. I. M. Belousova, V. P. Belousov, N. G. Mironova, T. D. Murav’eva, A. G. Scobelev, M. S. Yur’ev, and D. A. Videnichev, “Fast-acting nonlinear optical limiters and switchers, based on fullerenes and fullerene-like nanostructures,” Proc. SPIE 6455, 64551D (2007).
9. J. Wang and W. J. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B 91, 521 (2008).
10. X. Wei, M. Wang, Y. Bando, and D. Golberg, “Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles,” Sci. Technol. Adv. Mater. 12, 044605 (2011).
11. Y. Miyamoto, S. Berber, M. Yoon, A. Rubio, and D. Tomnek, “Onset of nanotube decay under extreme thermal and electronic excitations,” Physica B 323, 78 (2002).
12. I. M. Belousova, D. A. Videnichev, V. M. Volynkin, I. M. Kislyakov, T. D. Murav’eva, and A. M. Starodubtsev, “Method of limiting the intensity of laser radiation,” Russian Federation patent application No. 2011131906, priority on 28 July 2011.