УДК: 535
The implementation of adaptive optics wavefront spot extraction on FPGA
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Yanyan Zhang, Suting Chen, Mei Li The implementation of adaptive optics wavefront spot extraction on FPGA (Реализация в программируемой логической интегральной схеме (ПЛИС) алгоритма выделения точечных изображений в датчике волнового фронта адаптивной оптической системы) [на англ. яз.] // Оптический журнал. 2013. Т. 80. № 1. С. 68–74.
Yanyan Zhang, Suting Chen, Mei Li The implementation of adaptive optics wavefront spot extraction on FPGA (Реализация в программируемой логической интегральной схеме (ПЛИС) алгоритма выделения точечных изображений в датчике волнового фронта адаптивной оптической системы) [in English] // Opticheskii Zhurnal. 2013. V. 80. № 1. P. 68–74.
Yanyan Zhang, Suting Chen, and Mei Li, "The implementation of adaptive optics wavefront spot extraction on FPGA," Journal of Optical Technology. 80(1), 49-53 (2013). https://doi.org/10.1364/JOT.80.000049
The skylight background and the noise generated by the detection device system in adaptive optical system have a great impact for the spot detecting precision. In order to eliminate their affects, a wavefront spot signal extraction system is designed and implemented in this paper, and the effect of the extraction and the precision are tested in the indoor adaptive optics precision tracking system. The experiment results show that the design is better in extracting the target spot; the centroid accuracy after processed is higher. In the other hand, the processing time delay is small, which can meet the adaptive optics system’s real time requirement.
adaptive optics, signal extraction, FPGA
OCIS codes: 070.4560, 070.6020
References:1. Chen Bo, Li Xinyang. Zernike mode close-loop correction of adaptive optics with the curvature sensor // Infrared and Laser Engineering. 2011. V. 3. P. 467–47.
2. Jiang Pengzhi, Ma Haotong, Zou Yongchao, Du Shaojun. Study of aberration correction in light path of adaptive optical system // Acta Optica Sinica. 2012. V. 31. № 12. P. 1214002–1:5.
3. Li Chaohong, Xian Hao, Jiang Wenhan, Rao Changhui. Performance analysis of field-of-view Shack-Hartmann wavefront sensor based on splitter // Appl. Phys. B. Laser and optics. 2007. V. 88. № 3. P. 367–372.
4. Li Chaohong, Xian Hao, Jiang Wenhan, Rao Changhu. Analysis of wavefront measuring method for daytime adaptive optics // Acta Physica Silica. 2007. V. 56. № 7. P. 4289–4296.
5. Xu Xiuzhen, Li Zitian, Xue Lijun. Analysis and processing of CCD noise // Infrared and Laser Engineering. 2004. V. 33. № 4. P. 343–347.
6. Zhang Yanyan, Rao Changhui, Li Mei, Ma Xiaoyu. The detection error analysis of Hartmann-Shack wavefront sensor based on electron multiplying charge-coupled devices // Acta Physica Sinica. 2010. V. 59. № 8. P. 5904–5913.
7. Jiang Wenhan, Shen Feng, Xian Hao. Detecting error of shack-hartmann wavefront sensor // Chinese Joural of Quantum Electronics. 1998. V. 15. № 2.
8. Zhou Luchun, Wang Chunhong, Li Mei, Jiang Wenhan. Real-time wave front reconstruction based on a control flow systolic array // Opto-Electronic Engineering. 2008. V. 35. № 4. P. 39–42.
9. Peng Xiaofeng, Li Mei, Rao Changhui. Design of correlating hartmann-shack wavefront processor based on absolute difference algorithm // Opto-Electronic Engineering. 2008. V. 35. № 12. P. 18–22.
10. Ruan Qiuqi. Digital image processing. Bei Jing, China: Publishing House of Electronics Industry, 2007.