ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 538.958+535.012.2

Anisotropy of light absorbed by an ensemble of CdSe quantum nanoplates

For Russian citation (Opticheskii Zhurnal):

Мухина М.В., Маслов В.Г., Баранов А.В., Артемьев М.В., Прудников А.В., Фёдоров А.В. Анизотропия поглощения света ансамблем квантовых нанопластин CdSe // Оптический журнал. 2013. Т. 80. № 10. С. 80–84.

 

Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fyodorov, A. V.; Artem’ev, M. V.; Prudnikov, A. V. Anisotropy of light absorbed by an ensemble of CdSe quantum nanoplates [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 10. P. 80–84.

For citation (Journal of Optical Technology):
M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fyodorov, M. V. Artem’ev, and A. V. Prudnikov, "Anisotropy of light absorbed by an ensemble of CdSe quantum nanoplates," Journal of Optical Technology. 80(10), 642-644 (2013).  https://doi.org/10.1364/JOT.80.000642
Abstract:

The anisotropy of the optical properties of CdSe quantum nanoplates is investigated, using the methods of absorption spectroscopy. It is experimentally established that the optical properties of the quantum nanoplates are anisotropic. Spectral dependences are obtained for the absorption anisotropy of ensembles of nanocrystals ordered in a stretched polymer film. A technique has been developed for creating elastic polymer films made from polyvinyl butyral with a high concentration of quantum nanoplates.

Keywords:

CdSe quantum nanoplastins, 2D nanocrystals, absorption anisotropy, polymer matrix ordering

References:
1. Baker, A. Widmer-Cooper, M. Toney, P. Geissler, and A. Alivisatos, “Device-scale perpendicular alignment of colloidal nanorods,” Nano Lett. 10, 195 (2010).
2. S. Emin, S. P. Singh, L. Han, N. Satoh, and A. Islam, “Colloidal quantum dot solar cells,” Sol. Energy 85, 1264 (2011).
3. K.-J. Wu, K.-C. Chu, C.-Y. Chao, Y.-F. Chen, C.-W. Lai, C.-C. Kang, C.-Y. Chen, and P.-T. Chou, “CdS nanorods imbedded in liquid-crystal cells for smart optoelectronic devices,” Nano Lett. 7, 1908 (2007).
4. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum-dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532 (2009).
5. C. de Mello Donega and R. Koole, “Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum
dots,” J. Phys. Chem. C 113, 6511 (2009).
6. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59
(2000).
7. R. J. Martin-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors 9, 5149 (2009).
8. J. Ouyang, M. B. Zaman, F. J. Yan, D. Johnston, G. Li, X. Wu, D. Leek, C. I. Ratcliffe, J. A. Ripmeester, and K. Yu, “Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses,” J. Phys. Chem. C 112, 13805 (2008).
9. A. L. Rogach, A. Eychmuller, S. G. Hickey, and S. V. Kershaw, “Infraredemitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and application,” Small 3, 536 (2007).
10. R. Sarkar, A. K. Shaw, S. S. Narayanan, C. Rothe, S. Hintschich, A. Monkman, and S. K. Pal, “Size and shape-dependent electron–hole
relaxation dynamics in CdS nanocrystals,” Opt. Mater. 29, 1310 (2007).
11. L. Manna, E. Scher, L.-S. Li, and A. P. Alivisatos, “Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nano-
rods,” J. Am. Chem. Soc. 124, 7136 (2002).
12. J. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, “Linewidth dependence of radiative-exciton lifetimes in quantum wells,” Phys. Rev. Lett. 59, 2337 (1987).
13. S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and Al. L. Efros, “Colloidal nanoplatelets with two-dimensional electronic
structure,” Nature Mater. 10, 936 (2011).
14. S. Ithurria and B. Doubertret, “Quasi-2D colloidal CdSe platelets with thicknesses controlled at the atomic level,” J. Am. Chem. Soc. 130, 16504 (2008).
15. A. W. Achtstein, A. Schliwa, A. Prudnikau, M. Hardzei, M. V. Artemyev, C. Thomsen, and U. Woggon, “Electronic structure and exciton–phonon
interaction in two-dimensional colloidal-CdSe nanosheets,” Nano Lett. 12, 3151 (2012).
16. E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation of π−π* absorption of symmetrical molecules into components,” J. Phys. Chem. 74, 3868 (1970).
17. P. P. Feofilov, Polarized Luminescence of Atoms, Molecules, and Crystals (Izd. AN SSSR, Moscow, 1959).
18. H. Aoyama, Y. Yamazaki, N. Matsuura, H. Mada, and S. Kobayashi,  “Alignment of liquid crystals on the stretched polymer films,” Mol. Cryst. Liq. Cryst. 72, 127 (1981).
19. N. W. Schuler, “Iodine-stained light polarizer,” U.S. Patent No. 4166871 (1979).
20. J. Li and L.-W. Wang, “High-energy excitations in CdSe quantum rods,” Nano Lett. 3, 101 (2003).