ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.3, 535: 530.182

Strong-field dynamics of a light pulse composed of a small number of vibrations when plasma is excited in a dielectric medium

For Russian citation (Opticheskii Zhurnal):

Штумпф С.А., Козлов С.А., Королев А.А. Динамика сильного поля светового импульса из малого числа колебаний в условиях возбуждения плазмы в диэлектрической среде // Оптический журнал. 2013. Т. 80. № 5. С. 11–16.

 

Stumpf S.A., Kozlov S.A., Korolev A.A. Strong-field dynamics of a light pulse composed of a small number of vibrations when plasma is excited in a dielectric medium [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 5. P. 11–16.

For citation (Journal of Optical Technology):

S. A. Shtumpf, Yu. A. Shpolyansky, A. A. Korolev, and S. A. Kozlov, "Strong-field dynamics of a light pulse composed of a small number of vibrations when plasma is excited in a dielectric medium," Journal of Optical Technology. 80(5), 269-273 (2013). https://doi.org/10.1364/JOT.80.000269

Abstract:

The paper discusses the spectral-broadening processes of femtosecond pulses in the high-frequency region when optical breakdown occurs in a gaseous medium. It is shown that the spectrum of the generated high-frequency radiation contains several isolated maxima whose positions are determined by the properties of the medium and by the thickness of the layer of gas. An illustration is given of the role of taking into account the dispersion of the nonlinear refractive index in the high-frequency region of the optical range of the spectrum when optical breakdown is being modelled. The results of the modelling are compared with experimental data from an investigation of the optical breakdown of a layer of sulfur hexafluoride.

Keywords:

femtosecond pulses, optical breakdown, spectrum broadening, dispersion of nonlinear refractive index coefficient

Acknowledgements:

This work was supported by Grant 16.740.11.0459 of the Ministry of Education and Science of the Russian Federation and Grant 11-02-01346a of the Russian Foundation for Basic Research.

OCIS codes: 140.3300, 140.3440

References:

1. Th. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Phys. Rev. Lett. 72, 545 (2000).
2. P. M. Paul, E. S. Toma, and P. Breger, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
3. N. A. Panov, O. G. Kosareva, V. P. Kandidov, N. Akozbek, M. Skalora, and S. L. Chin, “Plasma channel localisation during multiple filamentation in air,” Kvantovaya Elektron. (Moscow) 37, 1153 (2007) [Quantum Electron. 37, 1153 (2007)].
4. O. G. Kosareva, N. A. Panov, D. S. Urypina, M. V. Kirilova, A. V. Mazhorova, A. B. Savel’ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B 91, 35 (2008).
5. S. A. Kozlov and S. V. Sazonov, “Nonlinear propagation of pulses with a width of several vibrations of the light field in dielectric media,” Zh. Eksp. Teor. Fiz. 111, 404 (1997) [Sov. Phys. JETP 84, 221 (1997)].

6. V. G. Bespalov, S. A. Kozlov, Yu. A. Shpolyansky, and I. A. Walmsley, “Simplified field wave equations for nonlinear propagation of extremely short light pulses,” Phys. Rev. A 66, 0138111 (2002).
7. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Nauka, Moscow, 2004).
8. S. A. Shtumpf, A. A. Korolev, and S. A. Kozlov, “Concerning the nature and lag of nonlinear polarizability of dielectrics in a field of light pulses composed of a small number of vibrations,” Izv. Akad. Nauk, Ser. Fiz. 70, No. 1, 124 (2006).
9. S. A. Shtumpf, A. A. Korolev, and S. A. Kozlov, “Strong-field dynamics of a light pulse with a small number of vibrations of the optical field in a dielectric medium,” Izv. Akad. Nauk, Ser. Fiz. 71, No. 2, 158 (2007).
10. A. A. Andreev, V. G. Bespalov, A. A. Gorodetskiĭ, S. A. Kozlov, V. N. Krylov, G. V. Lukomskiĭ, E. V. Novoselov, N. V. Petrov, S. É. Putilin, and S. A. Shtumpf, “Generation of ultrabroad-band terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spektrosk. 107, 538 (2009) [Opt. Spectrosc. 107, 538 (2009)].
11. P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21 (1974).
12. L. T. Vuong, R. B. Lopez-Martens, C. Hauri, and A. L. Gaeta, “Spectral reshaping and pulse compression via sequential filamentation in gases,” Opt. Express 16, 390 (2008).
13. E. T. J. Nibbering, G. Grillon, M. Franco, B. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2 , and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650 (1997).
14. Th. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282 (1997).
15. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582 (2000).
16. N. Zhavoronkov, “Efficient spectral conversion and temporal compression of femtosecond pulses in SF 6,” Opt. Lett. 36, 529 (2011).