УДК: 535.015
Conductivity and photoconductivity of granular silver films on a sapphire substrate
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ващенко Е.В., Гладских И.А., Пржибельский С.Г., Хромов В.В., Вартанян Т.А. Проводимость и фотопроводимость гранулированной пленки серебра на сапфировой подложке // Оптический журнал. 2013. Т. 80. № 5. С. 3–10.
Vashchenko E.V., Gladskikh I.A., Przhibelskiy S.G., Khromov V.V., Vartanyan T.A. Conductivity and photoconductivity of granular silver films on a sapphire substrate [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 5. P. 3–10.
E. V. Vashchenko, I. A. Gladskikh, S. G. Przhibel’skiĭ, V. V. Khromov, and T. A. Vartanyan, "Conductivity and photoconductivity of granular silver films on a sapphire substrate," Journal of Optical Technology. 80(5), 263-268 (2013). https://doi.org/10.1364/JOT.80.000263
The photoelectric properties of a high-resistance silver film on sapphire, consisting of granules 15–20 nm across with the same intervals between them, have been investigated. The ohmic conductivity of the film increased with temperature. Photoconductivity is detected in the film when optical radiation with wavelengths up to the red limit of the photoelectric effect acts on it. A sign change of the photocurrent is detected in the photoconductivity spectrum when the current through the film increases under the action of radiation with wavelength less than 460 nm, whereas it decreases when the wavelength is greater than 460 nm. A conductivity and photoconductivity model is proposed that is based on doping of the dielectric substrate due to the metallic nanoparticles placed on it and the motion of electrons over traps in the substrate. The position of the bottom of the conduction band of the dielectric relative to the Fermi level for silver is calculated in terms of the model.
granular silver film, dielectric substrate, traps in substrate, conductivity, activation energy, photoconductivity
Acknowledgements:This work was carried out with the support of a grant for students and graduate students of institutions of higher education and academic institutes located on the territory of St. Petersburg (2011) and Grant 12-02-31922 of the Russian Foundation for Basic Research.
OCIS codes: 240.6680, 350.4990, 160.4236
References:1. M. C. Roco, R. S. Williams, and P. Alivisatos, eds., Nanotechnology Research Directions: IWGN Workshop Report: Vision for Nanotechnology R & D in the Next Decade (Kluwer Academic, Boston, 2001; Mir, Moscow, 2002).
2. B. Bhushan, ed., Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).
3. V. I. Arzhantsev et al., White Book on Nanotechnologies: Studies in Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation: from the Materials of the First All-Russia Conference of Scientists, Engineers, and Manufacturers in the Area of Nanotechnologies: A Collection (URSS, Moscow, 2008).
4. C. A. Neugebauer and M. N. Web, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74 (1962).
5. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).
6. S. Wagner and A. Pundt, “Conduction mechanisms during the growth of the Pd thin films: experiment and model,” Phys. Rev. B 78, 155131 (2008).
7. D. A. Zakgeı˘m, I. V. Rozhanskiı˘, and I. P. Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].
8. I. E. Efimov, I. Ya. Kozyr’, and Yu. I. Gorbunov, Microelectronics (Vysshaya Shkola, Moscow, 1986).
9. É. L. Nolle and M. Ya. Shchelev, “Photoelectron emission caused by surface plasmons in silver nanoparticles,” Pis’ma Zh. Eksp. Teor. Fiz. 30, No. 8, 1 (2004) [JETP Lett. 30, 304 (2004)].
10. A. P. Boltaev, N. A. Penin, A. O. Pogosov, and F. A. Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].
11. K. Oura, V. G. Lifshits, and A. A. Saranin, Introduction to Surface Physics (Nauka, Moscow, 2006).
12. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
13. D. K. Nikiforov, “Emitting thin-film Al–Al2 O3 and Be–BeO structures under the conditions of ion–electron bombardment,” Author’s abstract of dissertation for candidate of physicomathematical sciences, Moscow (2006).
14. W. J. Gignak, R. S. Williams, and S. P. Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985).
15. T. V. Perevalov and V. A. Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” Usp. Fiz. Nauk 180, 587 (2010) [Phys. Usp. 53, 561 (2010)].
16. V. A. Pustovarov, V. Sh. Aliev, and T. V. Perevalov, “Electronic structure of an oxygen vacancy in Al2 O 3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].
17. A. Sasahara, H. Uetsuka, and H. Onishi, “Noncontact-mode atomic-force microscopy observation of an α-Al 2 O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000).
18. B. K. Ridley, Quantum Processes in Semiconductors (Oxford University Press, New York, 1999; Mir, Moscow, 1986).