УДК: 53.535.8
A method of generating amplitude masks with a constant power spectra and using them to measure the two-dimensional modulation-transfer functions of optical systems
Full text on elibrary.ru
Publication in Journal of Optical Technology
Евтихиев Н.Н., Краснов В.В., Стариков С.Н. Метод генерации амплитудных масок с постоянными спектрами мощности и их использование для измерения двумерных модуляционных передаточных функций оптических систем // Оптический журнал. 2013. Т. 80. № 5. С. 44–52.
Evtikhiev N.N., Krasnov V.V., Starikov S.N. A method of generating amplitude masks with a constant power spectra and using them to measure the two-dimensional modulation-transfer functions of optical systems [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 5. P. 44–52.
N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, "A method of generating amplitude masks with a constant power spectra and using them to measure the two-dimensional modulation-transfer functions of optical systems," Journal of Optical Technology. 80(5), 294-300 (2013). https://doi.org/10.1364/JOT.80.000294
A method has been developed for generating amplitude masks with constant power spectra so that they can be used to measure the two-dimensional modulation-transfer functions of optical systems. This paper estimates the spectral stability of the masks obtained by the method developed here and of other forms of masks against the noise and geometrical distortions that arise when images of the masks are recorded by photosensor arrays. The possibilities of using them to measure two-dimensional modulation-transfer functions are analyzed. The two-dimensional modulation-transfer function of a digital camera is measured, using a mask obtained by the method developed here and correlation alignment of the rasters.
two-dimensional modulation-transfer function, mask with constant power spectra, modulation-transfer functions measurement method
OCIS codes: 110.4100, 070.4790, 070.2025, 110.2960, 120.3940, 120.4800
References:1. X. Zhang, T. Kashti, D. Kella, T. Frank, D. Shaked, R. Ulichney, M. Fischer, and J. P. Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
2. A. Daniels, G. Boreman, A. Ducharme, and E. Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
3. B. T. Teipen and D. L. MacFarlane, “Liquid-crystal-display projector-based modulation-transfer function measurements of charge-coupled-device videocamera systems,” Appl. Opt. 39, 515 (2000).
4. A. Fernández-Oliveras, A. M. Pozo, and M. Rubiño, “Comparison of spectacle-lens optical quality by modulation-transfer-function measurements based on random-dot patterns,” Opt. Eng. 49, 083603 (2010).
5. H. Kubota and H. Ohzu, “Method of response function by means of random chart,” J. Opt. Soc. Am. 47, 666 (1957).
6. E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337 (1978).
7. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788 (1987).
8. L. R. Rabiner and B. Gold, Theory and Applications of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975; Mir, Moscow, 1978), pp. 89–227.