УДК: 681.785.5, 535.375.56
Analyzing natural gas by spontaneous Raman scattering spectroscopy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Булдаков М.А., Королев Б.В., Корольков В.А., Матросов И.И., Петров Д.В., Тихомиров А.А. Анализ природного газа методом спектроскопии спонтанного комбинационного рассеяния света // Оптический журнал. 2013. Т. 80. № 7. С. 27–32.
Buldakov M.A., Korolev B.V., Korolkov V.A., Matrosov I.I., Petrov D.V., Tikhomirov A.A. Analyzing natural gas by spontaneous Raman scattering spectroscopy [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 27–32.
M. A. Buldakov, V. A. Korolkov, I. I. Matrosov, D. V. Petrov, A. A. Tikhomirov, and B. V. Korolev, "Analyzing natural gas by spontaneous Raman scattering spectroscopy," Journal of Optical Technology. 80(7), 426-430 (2013). https://doi.org/10.1364/JOT.80.000426
The use of multipass optical systems as well as the compression of the gaseous test medium to increase the signal intensity of the spontaneous Raman scattering of light has been experimentally studied. A description of a prototype developed for a natural-gas analyzer based on spontaneous Raman scattering spectroscopy is presented. A technique is described for calculating the composition of natural gas from its spectrum. The results are compared with chromatographic-analysis data.
spontaneous Raman scattering spectroscopy, gas analysis, natural gas
Acknowledgements:This work was carried out as part of base project No. VII.66.1.2 of the Siberian Branch of the Russian Academy of Sciences, “Development of physical methods and technical facilities for monitoring the environment and ensuring the safety of the population.”
OCIS codes: 300.6450, 120.4640, 280.1545
References:1. GOST [State Standard] 31371.7-2008, “Natural gas. Determining the composition by the method of gas chromatography with an estimate of the indeterminacy.”
2. J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19, 085408 (2008).
3. S. C. Eichmann, M. Weschta, J. Kiefer, T. Seeger, and A. Leipertz, “Characterization of a fast gas analyzer based on Raman scattering for the analysis of synthesis gas,” Rev. Sci. Instrum. 81, 125104 (2010).
4. S. Schorsch, J. Kiefer, S. Steuer, T. Seeger, A. Leipertz, S. Gonschorek, B. Abröll, and M. Käß, “Entwicklung eines Echtzeitanalyse-Systems zur Charakterisierung von Brenngasgemischen in Gasturbinenkraftwerken,” Chemie Ing. Tech. 83, 247 (2011).
5. W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Mol. Spectrosc. 43, 393 (1972).
6. K. C. Utsav, J. A. Silver, D. C. Hovde, and P. L. Varghese, “Improved multiple-pass Raman spectrometer,” Appl. Opt. 50, 4805 (2011).
7. J. C. Hilico, J. P. Champion, S. Toumi, Vl. G. Tyuterev, and S. A. Tashkun, “New analysis of the pentad system of methane and prediction of the (pentad–pentad) spectrum,” J. Mol. Spectrosc. 168, 455 (1994).
8. L. M. Sverdlov, M. A. Kovner, and E. P. Kraı˘nov, Vibrational Spectra of Polyatomic Molecules (Nauka, Moscow, 1970).