ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.399

The effect of temperature on the luminescence of molecular clusters of silver in photothermorefractive glasses

For Russian citation (Opticheskii Zhurnal):
Агафонова Д.С., Егоров В.И., Игнатьев А.И., Сидоров А.И. Влияние температуры на люминесценцию молекулярных кластеров серебра в фото-термо-рефрактивных стеклах // Оптический журнал. 2013. Т. 87. № 8. С. 51-56.

 

Agafonova D. S., Egorov V. I., Ignat’ev A. I., and Sidorov A. I. The effect of temperature on the luminescence of molecular clusters of silver in photothermorefractive glasses  [in Russian] // Opticheskii Zhurnal. 2013. Т. 87. № 8. Р. 51-56.

For citation (Journal of Optical Technology):

D. S. Agafonova, V. I. Egorov, A. I. Ignat’ev, and A. I. Sidorov, "The effect of temperature on the luminescence of molecular clusters of silver in photothermorefractive glasses," Journal of Optical Technology. 80(8), 506-509 (2013). https://doi.org/10.1364/JOT.80.000506

Abstract:

This paper presents the experimental results of a study of how temperature affects the luminescence of molecular clusters of silver in photothermorefractive glasses. It is shown that, after the glasses are UV-irradiated in the absorption band of cerium ions, intense and broad-band luminescence appears in the visible region. The luminescence centers responsible for this luminescence are neutral silver atoms and neutral molecular clusters of silver. Heat treatment at 350°C causes a tenfold increase of the luminescence intensity. The luminescence intensity decreases by a factor of 10 as the sample’s temperature is increased from 25°C to 200°C. The temperature dependence of the normalized luminescence intensity is shown for a fiber with silver introduced by ion exchange.

Keywords:

luminescence, molecular clusters, photo-thermo-refractory glasses

References:
  1. L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: synthesis and biological applications,” Nanotoday 6, No. 4, 401 (2011).
  2. Y. Z. Lu, W. T. Wei, and W. Chen, “Copper nanoclusters: synthesis, characterization and properties,” Chin. Sci. Bull. 57, No. 1, 41 (2012).
  3. G. A. Ozin and F. Hugues, “Silver atoms and small silver clusters stabilized in zeolite Y: optical spectroscopy,” J. Phys. Chem. 87, 94 (1983).
  4. G. A. Ozin, F. Hugues, S. M. Mattar, and D. F. McIntosh, “Low-nuclearity silver clusters in faujasite-type zeolites: optical spectroscopy, photochemistry, and relationship to the photodimerization of alkanes,” J. Phys. Chem. 87, 3445 (1983).
  5. G. A. Ozin and H. Huber, “Cryophotoclustering techniques for synthesizing very small, naked silver clusters Agn of known size (where n = 2 – 5). The molecular metal cluster-bulk metal particle interface,” Inorg. Chem. 17, No. 1, 155 (1978).
  6. S. Fedrigo, W. Harbich, and J. Buttet, “Optical response of Ag 2, Ag3 , Au 2 , and Au3 in argon matrices,” J. Chem. Phys. 99, 5712 (1993).
  7. C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, “Fluorescence and excitation spectra of Ag 4 in an argon matrix,” Chem. Phys. Lett. 313, 105 (1999).
  8. J. Tiggesbaumker, L. Koller, K.-H. Meiwes-Broer, and A. Liebsch, “Blue shift of Mie plasma frequency in Ag clusters and particles,” Phys. Rev. A 48, R1749 (1993).
  9. W. Zheng and T. Kurobori, “Assignments and optical properties of X-ray-induced colour centres in blue and orange radiophotoluminescent silver-activated glasses,” J. Lumin. 131, 36 (2011).
  10. N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, “Silver nanoparticles in oxide glasses: technologies and properties,” in Silver Nanoparticles, D. P. Perez, ed. (In-Tech, Vukovar, Croatia, 2010), pp. 177–201.
  11. R. A. Ganeev, A. I. Ryasnyanskiı˘, A. L. Stepanov, M. K. Kodirov, and T. Usmanov, “Nonlinear properties of composites based on dielectric layers containing copper and silver nanoparticles,” Opt. Spektrosk. 95, 1034 (2003) [Opt. Spectrosc. 95, 967 (2003)].
  12. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
  13. M. Eichelbaum, K. Rademann, A. Hoell, D. M. Tatchev, W. Weigel, R. Stößer, and G. Pacchioni, “Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses,” Nanotechnology 19, 135701 (2008).
  14. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045 (2009).
  15. N. T. Cuong, V. K. Tikhomirov, L. F. Chibotaru, A. Stesmans, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass,” J. Chem. Phys. 136, 174108 (2012).
  16. J. J. Velazquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy-level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20, 13582 (2012).
  17. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, “Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000°C,” Rev. Sci. Instrum. 68, 2759 (1997).
  18. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, “Fluorescence decay-time characteristics of erbium-doped optical fiber at elevated temperatures,” Rev. Sci. Instrum. 68, 2764 (1997).
  19. A. V. Vostokov, I. A. Verzin, A. I. Ignat’ev, O. A. Podsvirov, and A. I. Sidorov, “Comparison of the formation kinetics of silver nanoparticles of photo-thermo-refractive glass after ultraviolet and electron irradiation,” Opt. Spektrosk. 109, No. 3, 366 (2010) [Opt. Spectrosc. 109, 358 (2010)].
  20. A. I. Ignat’ev, A. V. Nashchekin, V. M. Nevedomskiı˘, O. A. Podsvirov, A. I. Sidorov, A. P. Solov’ev, and O. A. Usov, “Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation,” Zh. Tekh. Fiz. 81, No. 5, 75 (2011) [Tech. Phys. 56, 662 (2011)].
  21. A. Banerjee, T. K. Ghanty, A. Chakrabarti, and C. Kamal, “Nonlinear optical properties of Au19M (M = Li, Na, K, Rb, Cs, Cu, Ag) clusters,” J. Phys. Chem. C 116, 193 (2012).
  22. J. Zhou, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of molecular oxygen with small neutral and charged silver clusters,” Chem. Phys. Lett. 421, 448 (2006).
  23. S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” J. Chem. Phys. 122, 144701 (2005).