ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 520.36

Concept of the construction of the optical setup of a panoramic Stokes polarimeter for small telescopes

For Russian citation (Opticheskii Zhurnal):

Синявский И.И., Иванов Ю.С., Видьмаченко А.П. Концепция построения оптической схемы панорамного стокс-поляриметра для малых телескопов // Оптический журнал. 2013. Т. 80. № 9. С. 27–32.

Sinyavskiĭ I. I., Ivanov Yu. S., and Vil’machenko A. P. Concept of the construction of the optical setup of a panoramic Stokes polarimeter for small telescopes   [In Russian] // Opticheskii Zhurnal. 2013. V. 80. №9. P. 27–32.

For citation (Journal of Optical Technology):

I. I. Sinyavskiĭ, Yu. S. Ivanov, and A. P. Vil’machenko, "Concept of the construction of the optical setup of a panoramic Stokes polarimeter for small telescopes," Journal of Optical Technology. 80(9), 545-548 (2013). https://doi.org/10.1364/JOT.80.000545

Abstract:
This article proposes the concept of the construction of an imaging polarizer based on polarization films for measuring the linear polarization of images of celestial extended and point objects. The spectral range of operation of the device is 420–850 nm, and the field-of-view angle is 0.25°×0.25°. The device is intended to be used in telescopes with a primary mirror up to 1 m in diameter and relative aperture f/12. The advantages and disadvantages of the proposed device are analyzed.
Keywords:

polarization depicting a stock polarimeter

OCIS codes: 120.5410, 110.5405.

References:

1. J. Tinbergen, Astronomical Polarimetry (Cambridge University, New York, 1996).
2. J. H. Hough, “New opportunities for astronomical polarimetry,” J. Quant. Spectrosc. Radiat. Transf. 106, 122 (2007).
3. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399 (1852).
4. Yu. S. Ivanov, I. I. Sinyavskiı˘, and M. G. Sosonkin, “Astrospectropolarimeters for weak objects,” Opt. Zh. 73, No. 12, 63 (2006) [J. Opt. Technol. 73,
879 (2006)].
5. A. P. Vidmachenko, Yu. S. Ivanov, A. V. Morozhenko, E. P. Nevodovskiı˘, I. I. Sinyavskiı˘, and M. G. Sosonkin, “Spectropolarimeter for the terrestrial
tracking of the ‘planetary modelling’ space experiment,” Kosmichna nauka i tekhnologiya 13, No. 1, 63 (2007).
6. A. N. Ramaprakash, R. Gupta, A. K. Sen, and S. N. Tandon, “An imaging polarimeter (IMPOL) for multi-wavelength observations,” Astron. Astro-
phys. Suppl. Ser. 128, 369 (1998).
7. B. S. Rautela, G. C. Joshi, and J. C. Pandey, “ARIES imaging polarimeter,” Bull. Astron. Soc. India 32, No. 3, 159 (2004).
8. A. M. Gandorfer, P. Steiner, H. P. Povel, F. Aebersold, U. Egger, A. Feller, D. Gisler, S. Hagenbuch, and J. O. Stenflo, “Solar polarimetry in the near
UV with the Zurich Imaging Polarimeter ZIMPOL II,” Astron. Astrophys. 422, 703 (2004).
9. O. I. Bugaenko and A. L. Gural’chuk, “Astronomical spectropolarimeter. I. Basic operating principles,” in Photometric and Polarization Studies of
Heavenly Bodies (Nauk. Dumka, Kiev, 1985), pp. 160–164.
10. V. A. Kucherov, V. S. Samoı˘lov, and V. A. Chernavin, “Superachromatic phase plate,” Opt.-Mekh. Promst. 54, No. 9, 57 (1987) [Sov. J. Opt. Tech-
nol. 54, 575 (1987)].
11. V. A. Kucherov, “Achromatic phase shifter for the vacuum UV,” Kinemat. Fizika Nebes. Tel 12, No. 1, 52 (1996).
12. A. Shearer, B. Stappers, P. O’Connor, A. Golden, R. Strom, M. Redfern, and O. Ryan, “Enhanced optical emission during Crab giant radio pulses,”
Science 301, No. 5632, 493 (2003).
13. M. A. McLaughlin, A. G. Lyne, D. R. Lorimer, M. Kramer, A. J. Faulkner, R. N. Manchester, J. M. Cordes, F. Camilo, A. Possenti, I. H. Stairs, G. Hobbs, N. D’Amico, M. Burgay, and J. T. O’Brien, “Transient radio bursts from rotating neutron stars,” Nature 439, No. 7078, 817 (2006).
14. R. M. A. Azzam, “Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light,” Opt. Acta 29, 685 (1982).
15. J. Mudge, M. Virgen, and P. Dean, “Near-infrared simultaneous Stokes imaging polarimeter,” Proc. SPIE 7461, 74610L (2009).
16. J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four-camera complete Stokes imaging polarimeter,” Proc. SPIE 6972, 69720J (2008).
17. P. Collins, R. M. Redfern, and B. Sheeha, “Design, construction and calibration of the Galway Astronomical Stokes Polarimeter (GASP),” AIP Conf. Proc. 984, 241 (2008).
18. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453  (2006).
19. F. Meriaudeau, M. Ferraton, C. Stolz, O. Morel, and L. Bigue, “Polarization imaging for industrial inspection,” Proc. SPIE 6813, 681308 (2008).
20. W. L. Wolfe, “Properties of optical materials,” in Handbook of Optics, W. G. Driscol, ed. (McGraw-Hill, New York, 1978), Pt. 1, pp. 1–157.
21. E. Oliva, “Wedged double Wollaston, a device for single-shot polarimetric measurements,” Astron. Astrophys. Suppl. Ser. 123, 589 (1997).