УДК: 537.876.43
Calculating the field and spectrum of the reverse wave induced when a femtosecond pulse with a superwide spectrum propagates in an optical waveguide
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Конев Л.С., Шполянский Ю.А. Расчет поля и спектра индуцированной обратной волны при распространении фемтосекундного импульса со сверхшироким спектром в оптическом волноводе // Оптический журнал. 2014. Т. 81. № 1. С. 10–16.
Konev L.S., Shpolyanskiy Yu.A. Calculating the field and spectrum of the reverse wave induced when a femtosecond pulse with a superwide spectrum propagates in an optical waveguide [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 1. P. 10–16.
L. S. Konev and Yu. A. Shpolyanskiĭ, "Calculating the field and spectrum of the reverse wave induced when a femtosecond pulse with a superwide spectrum propagates in an optical waveguide," Journal of Optical Technology. 81(1), 6-11 (2014). https://doi.org/10.1364/JOT.81.000006
A numerical method is presented for solving a system of equations for the forward and reverse waves of radiation with a superwide spectrum in a transparent optical waveguide with arbitrary dispersion and cubic nonlinearity. The method can be used to model the interaction of counterpropagating pulses, as well as to model the process of generating the reverse (self-reflected) wave if it was originally absent. A discussion is given of the formation of the wave reflected from the optical inhomogeneities of the medium, induced by an intense pulse consisting of three field vibrations in a quartz fiber. Its intensity is small, and therefore it has no reverse effect on the pulse of the forward wave. The spectrum of the reflected wave contains triple frequencies.
extremely short pulse, femtosecond pulse, superbroadening of spectrum, reverse wave, self-reflection
OCIS codes: 320.7110, 190.4370, 320.6629, 320.2250, 190.5940
References:1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 2007, Mir, Moscow, 1996).
2. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992; Nauka, Moscow, 1988).
3. T. Brabec and K. Ferenc, “Intense few-cycle laser fields: frontiers of non-linear optics,” Rev. Mod. Phys. 72, 545 (2000).
4. V. G. Bespalov, S. A. Kozlov, Yu. A. Shpolyanskiy, and I. A. Walmsley, “Simplified field wave equations for the nonlinear propagation of extremely short light pulses,” Phys. Rev. A 66, 013811 (2002).
5. N. N. Rozanov, “Transformation of optical radiation by fast-moving smooth inhomogeneities of a medium,” Opt. Spektrosk. 106, 487 (2009) [Opt. Spectrosc. 106, 430 (2009)].
6. E. M. Buyanovskaya and S. A. Kozlov, “Dynamics of the fields of counter-propagating light pulses of a few oscillations in nonlinear dielectric media,” Pis'ma Zh. Eksp. Teor. Fiz. 86, 349 (2007) [JETP Lett. 86, 297 (2007)].
7. P. Kinsler, S. B. P. Radnor, and G. H. C. New, “Theory of directional pulse propagation,” Phys. Rev. A 72, 063807 (2005).
8. V. G. Bespalov, S. A. Kozlov, and Yu. A. Shpolyanskiı˘, “Method for analyzing the propagation dynamics of femtosecond pulses with a continuumspectrum in transparent optical media,” Opt. Zh. 67, No. 4, 5 (2000) [J. Opt. Technol. 67, 303 (2000)].