УДК: 520.224.2. 224.4
How latitudinal dependences of the earth’s temperature and albedo affect the thermal regime of an isothermal space object in solar-synchronous orbit
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Баёва Ю.В., Лаповок Е.В., Ханков С.И. Влияние широтных зависимостей температуры и альбедо Земли на тепловой режим изотермического космического объекта на солнечно-синхронной орбите // Оптический журнал. 2014. Т. 81. № 1. С. 17–24.
Bayova Yu.V., Lapovok E.V., Khankov S.I. How latitudinal dependences of the earth’s temperature and albedo affect the thermal regime of an isothermal space object in solar-synchronous orbit [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 1. P. 17–24.
Yu. V. Baëva, E. V. Lapovok, and S. I. Khankov, "How latitudinal dependences of the earth’s temperature and albedo affect the thermal regime of an isothermal space object in solar-synchronous orbit," Journal of Optical Technology. 81(1), 12-17 (2014). https://doi.org/10.1364/JOT.81.000012
An analytical description has been obtained for how the nonuniformity of the thermal radiation of the earth and the solar radiation reflected by it affect the temperature oscillations of a space object of spherical shape moving along a solar-synchronous orbit. The extent to which the amplitude of the periodic deviations from the stationary thermal state is affected by the defining parameters has been investigated. Boundary values have been established for the thermal inertia of a space object, which depends on the wall thickness of an empty sphere, as well as on its orbital height, beginning from which the earth’s thermal inhomogeneity has no significant effect on its thermal regime.
space object, irradiance factor, thermal regime, radiant heat transfer, Earth's radiation, Earth's albedo
OCIS codes: 120.4640, 120.0280, 350.1246, 350.6050, 350.6090
References:1. G. I. Petrov, ed., Modelling the Thermal Regimes of a Spacecraft and of the Surrounding Medium (Mashinostroenie, Moscow, 1971).
2. A. A. Kamenev, E. V. Lapovok, and S. I. Khankov, Analytical Methods of Calculating the Thermal Regimes and Characteristics of the Intrinsic Thermal Radiation of Objects in Near-Earth Space (L. T. Tuchkov NTTs Online Printing, 2006).
3. Yu. V. Tsypkin, E. V. Gavrilov, S. I. Khankov, E. V. Lapovok, A. I. Bogoyavlenskiı˘, and V. M. Volynkin, “Space telescope,” Russian Federation Patent for Useful Model No. 102120, priority 7/30/2010.
4. K. E. Trenberth, J. T. Fasullo, and J. Keihl, “Earth’s global energy budget,” Bull. Am. Meteorol. Soc. 90, 311 (2009).
5. G. N. Dul’nev and É. M. Semyashkin, Heat Exchange in Electronic Apparatus (Énergiya, Leningrad, 1968).
6. G. N. Dul’nev, V. G. Parfenov, and A. V. Sigalov, Methods of Calculating the Thermal Regime of Devices (Radio i Svyaz’, Moscow, 1990).
7. S. I. Bogomolov, Introduction to the Specialization of Radio Communications, Radio Broadcasting, and Television (TMTsDO, Tomsk, 2004).