ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.785.5, 53.083.92

Experimental study of the spread function and resolving power of an optical digital spectrograph based on an MFS polychromator

For Russian citation (Opticheskii Zhurnal):

Дробышев А.И., Савинов С.С. Экспериментальное исследование аппаратной функции и разрешающей способности оптического цифрового спектрографа на базе полихроматора МФС // Оптический журнал. 2014. Т. 81. № 1. С. 44–52.

 

Drobyshev A.I., Savinov S.S. Experimental study of the spread function and resolving power of an optical digital spectrograph based on an MFS polychromator [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 1. P. 44–52.

For citation (Journal of Optical Technology):

A. I. Drobyshev and S. S. Savinov, "Experimental study of the spread function and resolving power of an optical digital spectrograph based on an MFS polychromator," Journal of Optical Technology. 81(1), 33-38 (2014). https://doi.org/10.1364/JOT.81.000033

Abstract:

This paper gives the results of experimental studies of the spread function and practical resolving power of a digital spectrograph based on an MFS-8 spectral device and an MAES linear photodiode array. It is established that, as the width of the spectrograph’s exit slit increases from 3 to 100 μm, the spread function remains bell-shaped, with the maximum in the middle. The recorded spectral lines become narrower than the entrance slit as it increases above 15–30 μm. The experimental values of the practical resolving power monotonically increase as the slit width decreases from 90 to 10 μm, and then remain constant for 6 and 3 μm.

Keywords:

spectrograph, linear photodiode array, digital recording, spread function, practical resolving power

OCIS codes: 120.4640, 040.1520, 070.2025

References:

1. I. R. Shelpakova, V. G. Garanin, and V. A. Labusov, “Multielement solid-state detectors and their use in atomic-emission analysis (Review),” Zavod. Lab. Diag. Mat. 65, No. 10, 3 (1999).
2. V. A. Labusov, A. N. Put’makov, I. A. Zarubin, and V. G. Garanin, “New multichannel optical spectrometers based on MAES analyzers,” Zavod. Lab. Diag. Mat. 78, No. 1, Part II, 7 (2012).
3. V. G. Garanin, O. A. Neklyudov, D. V. Petrochenko, Z. V. Semenov, I. G. Shatalov, and S. V. Pankratov, “Software for atomic-emission spectral analysis,” Zavod. Lab. Diag. Mat. 78, No. 1, Part II, 69 (2012).
4. S. B. Zayakina, A. N. Put’makov, and G. N. Anoshin, “Modernization of the DFS-458 diffraction spectrograph: extending the possibilities of atomicemission spectral analysis,” Analit. Kont. 9, 212 (2005).
5. O. D. Vernidub and G. E. Lomakina, “Analysis of the materials of ferrous metallurgy by atomic emission with the inductively-coupled plasma method using MAES,” Zavod. Lab. Diag. Mat. 73, 54 (2007), special issue.
6. N. L. Chumakova and E. V. Smirnova, “Determination of lanthanum, cerium, neodymium, ytterbium, and yttrium in geological samples, using a multichannel analyzer of atomic-emission spectra,” Zavod. Lab. Diag. Mat. 76, No. 3, 3 (2010).
7. A. É. Kokhanovskiı˘, “Using an MAES analyzer to identify kinds of resin mixtures,” Zavod. Lab. Diag. Mat. 78, No. 1, Part II, 98 (2012).
8. I. V. Peı˘sakhson, The Optics of Spectral Devices (Mashinostroenie, Leningrad, 1975).
9. A. N. Zaı˘del’, G. V. Ostrovskaya, and Yu. I. Ostrovskiı˘, Technique and Practice of Spectroscopy (Nauka, Moscow, 1976).
10. V. A. Labusov, V. G. Garanin, and I. R. Shelpakova, “Multichannel analyzers of atomic-emission spectra. Modern status and analytical possibilities,” Z. Anal. Khim. 67, 697 (2012).
11. D. S. Rozhdestvenskiı˘, “Coherent and incoherent rays when an image is formed in a microscope,” Zh. Eksp. Teor. Fiz. 10, 305 (1940).
12. I. M. Nagibina and V. K. Prokof’ev, Spectral Devices and the Technique of Spectroscopy (GNTIML, Moscow, 1963).
13. K. D. Mielenz, “Spectroscope slit images in partially coherent light,” J. Opt. Soc. Am. A 57, 66 (1967).
14. A. Roseler, “Die Apparatefunktion von Einfachmonochromatoren bei teilkoherenter Beleuchtung des Eintrittspaltes,” Optik 27, 179 (1968).
15. Yu. A. Tolmachev, New Spectral Devices. Principles of Operation, S. É. Frish, ed. (Izd. Leningr. Univ., Leningrad, 1976).
16. I. V. Peı˘sakhson, “Calculating the instrumental functions of real spectral devices for partially coherent illumination of the slit,” Opt. Zh. 64, No. 6, 87 (1997) [J. Opt. Technol. 64, 580 (1997)].