УДК: 535.399
Thermochromic effect in aluminoborate glasses with copper (i) and chlorine ions
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бабкина А.Н., Сидоров А.И., Ширшнев П.С. Термохромный эффект в алюмоборатных стеклах с ионами меди (I) и хлора // Оптический журнал. 2014. Т. 81. № 1. С. 66–69.
Babkina A.N., Sidorov A.I., Shirshnev P.S. Thermochromic effect in aluminoborate glasses with copper (i) and chlorine ions [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 1. P. 66–69.
A. N. Babkina, A. I. Sidorov, and P. S. Shirshnev, "Thermochromic effect in aluminoborate glasses with copper (i) and chlorine ions," Journal of Optical Technology. 81(1), 50-52 (2014). https://doi.org/10.1364/JOT.81.000050
This paper presents the luminescence spectra of potassium–aluminoborate glasses containing copper (i) and chloride ions in the temperature interval 20°C–300°C. It shows that, when the temperature is increased, the luminescence thermochromic effect is observed in the glass, consisting of a short-wavelength shift of the maximum of the luminescence band by 100 nm while insignificantly changing the luminescence intensity at the maximum.
luminescence thermochromic effect, glass, copper ion, molecular cluster
Acknowledgements:The authors are grateful to T. A. Shakhverdov for help in carrying out the experiments.
This work was carried out with the support of the Russian Foundation for Basic Research (Grant mol-a No. 12-02-31896).
OCIS codes: 160 4670, 160 2540, 160 2750, 160 4236
References:1. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 1 (2009).
2. A. V. Dotsenko, L. B. Glebov, and V. A. Tsekomskii, Physics and Chemistry of Photochromic Glasses (CRC Press, New York, 1998), p. 190.
3. N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiı˘, and O. P. Vinogradova, “Low-threshold nonlinear-optical response of photochromic glasses with copper chloride nanocrystals,” Opt. Zh. 75, No. 12, 61 (2008) [J. Opt. Technol. 75, 809 (2008)].
4. A. A. Kim, N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiı˘, and P. S. Shirshnev, “Nonlinear optical effects in glasses containing copper chloride nanocrystals,” Pis’ma Zh. Tekh. Fiz. 37, No. 9, 22 (2011) [Tech. Phys. Lett. 37, 401 (2011)].
5. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. 23, 4521 (2011).
6. J. Malhotra, D. J. Hagan, and B. G. Potter, “Laser-induced darkening in semiconductor-doped glasses,” J. Opt. Soc. Am. B 8, 1531 (1991).
7. A. S. Kuznetsov, V. K. Tikhomirov, and V. V. Moshchalkov, “Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host,” Opt. Express 20, 21576 (2012).
8. J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, “Energy-level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20, 13582 (2012).
9. E. V. Kolobkova, A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photothermorefractive glasses,” Opt. Spektrosk. 114, 838 (2013) [Opt. Spectrosc. 114, 769 (2013)].
10. N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskiı˘, and T. A. Shakhverdov, “Broadband copper luminescence in potassium-aluminum borate glasses,” Opt. Spektrosk. 114, 417 (2013) [Opt. Spectrosc. 114, 379 (2013)].
11. A. H. Khalid and K. Kontis, “Thermographic phosphors for high-temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673 (2008).