УДК: 621.373.826
Powerful all-solid-state multiwave laser for aerosol lidars
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Рябцев Г.И., Богданович М.В., Григорьев А.В., Кабанов В.В., Костик О.Е., Лебедок Е.В., Лепченков К.В., Осипенко Ф.П., Рябцев А.Г., Чайковский А.П., Щемелев М.А., Титовец В.С. Мощный полностью твердотельный многоволновой лазер для аэрозольных лидаров // Оптический журнал. 2014. Т. 81. № 10. С. 20–25.
Ryabtsev G.I., Bogdanovich M.V., Grigoriev A.V., Kabanov V.V., Kostik O.E., Lebedok E.V., Lepchenkov K.V., Osipenko F.P., Ryabtsev A.G., Chaykovskiy A.P., Shchemelev M.A., Titovets V.S. Powerful all-solid-state multiwave laser for aerosol lidars [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 10. P. 20–25.
G. I. Ryabtsev, M. V. Bogdanovich, A. V. Grigor’ev, V. V. Kabanov, O. E. Kostik, Y. V. Lebiadok, K. V. Lepchenkov, F. P. Osipenko, A. G. Ryabtsev, A. P. Chaikovsky, M. A. Shchemelev, and U. S. Tsitavets, "Powerful all-solid-state multiwave laser for aerosol lidars," Journal of Optical Technology. 81(10), 571-574 (2014). https://doi.org/10.1364/JOT.81.000571
An all-solid-state multiwave laser radiator (lasing wavelengths 1064, 532, and 355 nm), integrated in a single implement with a telescope, has been developed for use in aerosol lidars. The main radiator is the master laser and an amplifier based on a YAG:Nd crystal, excited by laser diode arrays using a transverse pumping layout. In the Q-switched regime, the energy of the output pulses of the YAG:Nd laser radiator reaches 400 mJ (1064 nm). With simultaneous lasing at three wavelengths, the radiator forms radiation pulses at 1064, 532, and 355 nm, with energies of 170, 150, and 80 mJ, respectively. The pulse width is 8–11 ns at a repetition rate of 10 Hz. The developed multiwave laser radiator is effective for use as a component of aerosol lidars with an atmospheric probing range of up to 40 km.
YAG:Nd laser, diode pumping, lidar
OCIS codes: 140.3480, 140.3530, 140.3580, 010.3640
References:1. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, Ch. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET-A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing. Selected Papers of the 20th International Laser Radar Conference (ILRC), Vichy, France, 10–14 July 2000, pp. 155–158.
2. T. Murayama, N. Sugimoto, I. Matsui, Z. Liu, T. Sakai, T. Shibata, Y. Iwasaka, J. G. Won, S. C. Yoon, T. Li, J. Zhou, and H. Hu, “Lidar network observation of Asian dust,” in Advances in Laser Remote Sensing. Selected Papers of the 20th International Laser Radar Conference (ILRC), Vichy, France, 10–14 July 2000, pp. 169–177.
3. A. P. Chaı˘kovskiı˘, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, and B. B. Chen, “Lidar network CIS–LiNet for monitoring aerosol and ozone: metrology and apparatus,” Opt. Atm. Okeana 18, 1066 (2005).
4. J. Bösenberg and R. Hoff, “Plan for the implementation of the GAW Aerosol Lidar Observation Network GALION,” GAW Report No. 178, 46 (2007).
5. A. P. Chaikovsky, O. Dubovik, B. N. Holben, and A. I. Bril, “Methodology to retrieve atmospheric aerosol parameters by combining ground-based measurements of multi-wavelength lidar and sun sky-scanning radiometer,” Proc. SPIE 4678, 257 (2002).
6. A. Chaikovsky, O. Dubovik, P. Goloub, D. Tanré, G. Pappalardo, U. Wandinger, L. Chaikovskaya, S. Denisov, Y. Grudo, A. Lopatsin, Y. Karol, T. Lapyonok, M. Korol, F. Osipenko, D. Savitski, A. Slesar, A. Apituley, L. A. Arboledas, I. Binietoglou, P. Kokkalis, M. J. G. Munoz, A. Papayannis, M. R. Perrone, A. Pietruczuk, G. Pisani, F. Rocadenbosch, M. Sicard, F. De Tomasi, J. Wagner, and X. Wang, “Algorithm and software for the retrieval of vertical aerosol properties using combined lidar/radiometer data: dissemination in EARLINET,” in Reviewed and Revised Papers Presented at the 26th International Laser Radar Conference (ILRC 2012), Porto Heli, Greece, 25–29 June 2012, pp. 399–402.
7. V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Boesenberg, A. Chaikovsky, G. Chourdakis, A. Comerun, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43, 961 (2004).
8. A. M. Vdovenko, G. A. Kogaı˘, L. G. Sverdlik, S. S. Khmelevtsov, and B. B. Chen, “The latest lidar complex for studying the atmosphere over the center of Eurasia,” Vestnik KRSU No. 2 (2002).
9. G. G. Matvienko, S. M. Bobrovnikov, and B. V. Kaul’, “Prospects of using lidars for the study of media and the upper atmosphere,” Solnechno–Zemnaya Fiz. No. 16, 76 (2010).
10. N. V. Kravtsov, “Basic trends in the development of diode-pumped solid-state lasers,” Kvant. Elektron. (Moscow) 31, 661 (2001) [Quantum Electron. 31, 661 (2001)].
11. I. V. Glukhikh, S. A. Dimakov, R. F. Kurunov, S. S. Polikarpov, and S. V. Frolov, “Powerful solid-state transversely diode-pumped YAG:Nd lasers with improved radiation quality,” Zh. Tekh. Fiz. 81, No. 8, 70 (2011) [Tech. Phys. 56, 1128 (2011)].
12. A. Yu. Andreev, A. Yu. Leshko, A. V. Lotetskiı˘, A. A. Marmalyuk, T. A. Nalet, A. A. Padalitsa, N. A. Pikhtin, D. R. Sabitov, V. A. Simakov, S. O. Slipchenko, M. A. Khmylev, and I. S. Tarasov, “High-power laser diodes (λ = 808–850 nm) based on asymmetric separate-confinement heterostructures,” Fiz. Tekh. Poluprovodn. 40, 628 (2006) [Semiconductors 40, 611 (2006)].
13. K. A. Bulashevich, V. F. Mymrin, S. Yu. Karpov, D. M. Demidov, and A. L. Ter-Martirosyan, “Effect of free-carrier absorption on performance of 808-nm AlGaAs-based high-power laser diodes,” Semicond. Sci. Technol. 22, 502 (2007).
14. T. V. Bezyazychnaya, M. V. Bogdanovich, A. V. Grigor’ev, V. V. Kabanov, O. E. Kostik, Y. V. Lebiadok, K. V. Lepchenkov, V. V. Mashko, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, and L. L. Teplyashin, “Transversally diode-pumped Q-switched Nd:YAG laser with improved power and spatial characteristics,” Opt. Commun. 308, 26 (2013).