УДК: 535.016, 535.15, 535.041.08
Investigating the energy spectrum of silicon nanoclusters in a silicon dioxide matrix
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Григорьев Л.В., Михайлов А.В. Исследование энергетического спектра нанокластеров кремния в матрице диоксида кремния // Оптический журнал. 2014. Т. 81. № 10. С. 77–82.
Grigoriev L.V., Mikhailov A.V. Investigating the energy spectrum of silicon nanoclusters in a silicon dioxide matrix [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 10. P. 77–82.
L. V. Grigor’ev and A. V. Mikhaĭlov, "Investigating the energy spectrum of silicon nanoclusters in a silicon dioxide matrix," Journal of Optical Technology. 81(10), 616-620 (2014). https://doi.org/10.1364/JOT.81.000616
This paper presents the results of an investigation of the energy spectrum of traps that occur in a silicon nanocomposite created using the new “elion” technology—low-temperature laser modification of the surface of a layer of nanoporous silicon in the medium of a strong gaseous oxidant. Combined analysis of the transmission spectra of laser-oxidized nanoporous silicon and the trap-distribution function over the activation energy made it possible to explain the presence of selective absorption in the IR region.
silicon nanocomposite, laser modification of surface, optical spectrum, selective absorption, thermoactivated current spectroscopy
OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160
References:1. L. Pavesi, “Will silicon be the photonic material of the third millennium?” J. Phys.: Condens. Matter. 15, R1169 (2003).
2. M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light-emitting diodes emitting over the 1.2–1.4-μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161168 (2008).
3. G. Z. Mashanovich, M. M. Milosevich, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low-loss silicon waveguides for the mid-infrared,” Opt. Express 19, No. 8, 7113 (2011).
4. L. V. Grigor’ev and A. V. Mikhaı˘lov, “Forming a silicon nanocomposite by laser annealing in a strong oxidant medium,” Opt. Zh. 80, No. 11, 94 (2013) [J. Opt. Technol. 80, 714 (2013)].
5. A. G. Gullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” Appl. Phys. 82, 909 (1997).
6. S. A. Gavrilov and A. N. Belov, Electrochemical Processes in the Technology of Micro- and Nanoelectronics (Vysshee Obrazovanie, Moscow, 2009).
7. L. V. Grigor’ev, P. P. Konorov, and A. V. Mikhaı˘lov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 94 (2012) [J. Opt. Technol. 79, 99 (2012)].
8. O. Bisi, S. Ossieni, and L. Pavesi, “Porous silicon: a quantum sponge for silicon based optoelectronics,” Surf. Sci. Rep. 38, No. 1, 1 (2000).
9. Yu. A. Gorokhovatskiı˘, Thermal Activation Spectroscopy of High-Resistance Materials (Radio i Svyaz’, Moscow, 1991).
10. V. Ya. Arsenin and A. N. Tikhonov, Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1979).
11. V. Ya. Arsenin and A. N. Tikhonov, Numerical Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1991).