ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.016, 535.15, 535.041.08

Investigating the energy spectrum of silicon nanoclusters in a silicon dioxide matrix

For Russian citation (Opticheskii Zhurnal):

Григорьев Л.В., Михайлов А.В. Исследование энергетического спектра нанокластеров кремния в матрице диоксида кремния // Оптический журнал. 2014. Т. 81. № 10. С. 77–82.

 

Grigoriev L.V., Mikhailov A.V. Investigating the energy spectrum of silicon nanoclusters in a silicon dioxide matrix [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 10. P. 77–82.

For citation (Journal of Optical Technology):

L. V. Grigor’ev and A. V. Mikhaĭlov, "Investigating the energy spectrum of silicon nanoclusters in a silicon dioxide matrix," Journal of Optical Technology. 81(10), 616-620 (2014). https://doi.org/10.1364/JOT.81.000616

Abstract:

This paper presents the results of an investigation of the energy spectrum of traps that occur in a silicon nanocomposite created using the new “elion” technology—low-temperature laser modification of the surface of a layer of nanoporous silicon in the medium of a strong gaseous oxidant. Combined analysis of the transmission spectra of laser-oxidized nanoporous silicon and the trap-distribution function over the activation energy made it possible to explain the presence of selective absorption in the IR region.

Keywords:

silicon nanocomposite, laser modification of surface, optical spectrum, selective absorption, thermoactivated current spectroscopy

OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160

References:

1. L. Pavesi, “Will silicon be the photonic material of the third millennium?” J. Phys.: Condens. Matter. 15, R1169 (2003).
2. M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, “Silicon light-emitting diodes emitting over the 1.2–1.4-μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161168 (2008).

3. G. Z. Mashanovich, M. M. Milosevich, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low-loss silicon waveguides for the mid-infrared,” Opt. Express 19, No. 8, 7113 (2011).
4. L. V. Grigor’ev and A. V. Mikhaı˘lov, “Forming a silicon nanocomposite by laser annealing in a strong oxidant medium,” Opt. Zh. 80, No. 11, 94 (2013) [J. Opt. Technol. 80, 714 (2013)].
5. A. G. Gullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” Appl. Phys. 82, 909 (1997).
6. S. A. Gavrilov and A. N. Belov, Electrochemical Processes in the Technology of Micro- and Nanoelectronics (Vysshee Obrazovanie, Moscow, 2009).
7. L. V. Grigor’ev, P. P. Konorov, and A. V. Mikhaı˘lov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 94 (2012) [J. Opt. Technol. 79, 99 (2012)].
8. O. Bisi, S. Ossieni, and L. Pavesi, “Porous silicon: a quantum sponge for silicon based optoelectronics,” Surf. Sci. Rep. 38, No. 1, 1 (2000).
9. Yu. A. Gorokhovatskiı˘, Thermal Activation Spectroscopy of High-Resistance Materials (Radio i Svyaz’, Moscow, 1991).
10. V. Ya. Arsenin and A. N. Tikhonov, Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1979).
11. V. Ya. Arsenin and A. N. Tikhonov, Numerical Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1991).