УДК: 535, 541.13(6)
Plasmon amplification and quenching of the fluorescence and phosphorescence of anionic and cationic dyes in various media
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Брюханов В.В., Минаев Б.Ф., Цибульникова А.В., Тихомирова Н.С., Слежкин В.А. Плазмонное усиление и тушение флуоресценции и фосфоресценции анионных и катионных красителей в различных средах // Оптический журнал. 2014. Т. 81. № 11. С. 7–14.
Bryukhanov V.V., Minaev B.F., Tsybulnikova A.V., Tikhomirova N.S., Slezhkin V.A. Plasmon amplification and quenching of the fluorescence and phosphorescence of anionic and cationic dyes in various media [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 11. P. 7–14.
V. V. Bryukhanov, B. F. Minaev, A. V. Tsibul’nikova, N. S. Tikhomirova, and V. A. Slezhkin, "Plasmon amplification and quenching of the fluorescence and phosphorescence of anionic and cationic dyes in various media," Journal of Optical Technology. 81(11), 625-630 (2014). https://doi.org/10.1364/JOT.81.000625
This paper discusses how the nanoparticles of a silver citrate hydrosol affect the fluorescence and phosphorescence intensity and lifetime of anionic and cationic dye molecules. It is found that, depending on the nanoparticle concentration of the silver hydrosol, there is both amplification and quenching of the fluorescence and phosphorescence of the molecules. Interaction mechanisms are observed between excitation by the molecules and by the silver nanoparticles.
nanoparticles of silver hydrosol, amplification and quenching of fluorescence and phosphorescence, fluorescence lifetime
Acknowledgements:The results were obtained in the framework of State Project No. 3.809.2014/K of the Ministry of Education and Science of Russia.
OCIS codes: 300.6280, 240.6490, 240.6490
References:1. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematical Modeling and Applications (Cambridge Univ. Press, New York, 2010).
2. B. N. Khlebtsov, “Plasmon-resonance nanoparticles for biomedical applications,” Author’s abstract of doctoral dissertation, Saratov State Univ., Saratov (2010).
3. A. S. Sarycheva, E. Yu. Parshina, A. A. Baı˘zhumanov, A. A. Semenova, E. A. Gudilin, and G. V. Maksimov, “The effect of silver hydrosols on the structural integrity of erythrocytes,” Nanosis. Fiz. Khim. Matem. 4, No. 1, 66 (2013).
4. M. Guzman, J. Dille, and S. Godet, “Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria,” Nanomed. Nanotech. Biol. Med. 8, No. 1, 37 (2012).
5. R. Thombre, S. Mehta, J. Mohite, and P. Jaisinghani, “Synthesis of silver nanoparticles and its cytotoxic effect against THP-1 cancer celline,” Int. J. Pharm. Biol. Sci. 4, No. 1, 184 (2013).
6. I. G. Motevich, N. D. Strekal’, A. V. Shul’ga, V. A. Basinskiı˘, and S. A. Myaskevich, “Using plasmon-enhanced silver films to increase contrast in histology,” Zh. Prikl. Spektrosk. 79, 646 (2012).
7. Q. Qiao, C.-X. Shan, J. Zheng, B.-H. Li, Z.-Z. Zhang, and D.-Z. Shen, “Surface plasmon-enhanced ultraviolet light-emitting devices,” J. Lumin. 134, 754 (2013).
8. J. Bonsak, “Chemical synthesis of silver nanoparticles for light trapping applications in silicon solar cells,” Master’s thesis (Faculty of Mathematics and Natural Sciences, University of Oslo, 2010).
9. I. A. Boldov, A. S. Kuch’yanov, A. I. Plekhanov, N. A. Orlova, I. Yu. Kargapolova, and V. V. Shelkovnikov, “Fiber-optic chemical sensor of amine-type compounds,” Fiz. Tverd. Tela 53, 1080 (2011) [Phys. Solid State 53, 1152 (2011)].
10. A. B. Artemov, V. A. Zhil’tsov, Yu. A. Krutyakov, M. N. Ivanov, A. V. Pereslavtsev, M. V. Petrova, A. V. Timofeev, and O. V. Shelyakov, “Obtaining nanosize metals by electric discharge in liquid,” Vopr. Atomn. Nauk. Tekh. Ser. Plazmen. Elektron. Nov. Met. Uskoreniya 6, No. 4, 150 (2008).
11. A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of nanoparticles during laser ablation of solids in liquids,” in The Action of Laser Radiation on Absorbing Media, S. V. Garnov and A. A. Samokhina, eds. (Tr. Inst. Obshch. Fiz. A. M. Prokhorov, 2004), Vol. 60, p. 83.
12. R. Yu. Borkunov and V. V. Bryukhanov, “Femtosecond ablation of copper and silver nanoparticles in water,” Izv. Kalin. Gos. Tekh. Univ. No. 31, 11 (2013).
13. V. A. Litvin and B. F. Minaev, “Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity,” Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 108, 115 (2013).
14. V. A. Litvin, R. L. Galagan, and B. F. Minaev, “Kinetic and mechanism formation of silver nanoparticles coated by synthetic humic substances,” Colloids Surf. A Physicochem. Eng. Aspects 414, No. 2, 234 (2012).
15. D. Ghosh, A. Girigoswami, and N. Chattopadhyay, “Superquenching of coumarin 153 by gold nanoparticles,” J. Photochem. Photobiol. A 242, 44 (2012).
16. S. Chandra, J. Doran, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Solar Energy Mater. Solar Cells 98, 385 (2012).
17. V. V. Bryukhanov, V. A. Slezhkin, R. V. Gorlov, and I. G. Samusev, “Energy transport of surface plasmon resonance from rough silver films to 6G rhodamine molecules in a polyvinyl alcohol film,” in Kazan Science: Collection of Scientific Articles (Kazan. Izd. Dom, Kazan, 2011), pp. 4–9.
18. I. S. Chekman, B. F. Minaev, T. Yu. Nebesnaya, V. A. Litvin, and R. L. Galagan, “Synthesis of new types of silver and gold nanoparticles using synthetic humic substances,” Zh. Nats. Akad. Med. Nauk Ukr. 18, 451 (2012).