ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.383, 621.384.32

Optical model of the atmosphere for problems of calculating the irradiance of the entrance pupils of optoelectronic systems

For Russian citation (Opticheskii Zhurnal):

Филиппов В.Л., Танташев М.В., Вендеревская И.Г. Оптическая модель атмосферы для задач расчета облученности входных зрачков оптико-электронных систем // Оптический журнал. 2014. Т. 81. № 4. С. 3–10.

 

Filippov V.L., Tantashev M.V., Venderevskaya I.G. Optical model of the atmosphere for problems of calculating the irradiance of the entrance pupils of optoelectronic systems [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 4. P. 3–10.

For citation (Journal of Optical Technology):

V. L. Filippov, M. V. Tantashev, and I. G. Venderevskaya, "Optical model of the atmosphere for problems of calculating the irradiance of the entrance pupils of optoelectronic systems," Journal of Optical Technology. 81(4), 168-173 (2014). https://doi.org/10.1364/JOT.81.000168

Abstract:

This paper describes an optical model of the atmosphere that fundamentally differs from the working models used to estimate how the atmosphere affects the operation of optoelectronic devices. The model includes concepts of typical aerosol situations (tropics, mid-latitude summer, etc.) and obtains its input parameters from standard weather reports. Molecular absorption is determined on the basis of the HITRAN spectral-line database; the concept of the transmission function is not used in this case, and accordingly the problem of an unresolved spectrum does not arise in problems of radiation transport in a medium with a complex structure of the absorption spectrum in the IR region. The latter problem is especially acute in determining the contrast of observed objects when the viewing paths have complex geometry. The approach used here is equivalent to line integration with an insignificant loss of accuracy and significant speed-up of the calculation. The model makes it possible to take into account diurnal and seasonal changes of the viewing conditions in the troposphere and especially in its lower layers with the maximum adequacy, both in clear weather and under low unbroken clouds, with and without precipitation.

Keywords:

optical model of atmosphere, aerosol attenuation, molecular absorption, aerosol attenuation profile

OCIS codes: 010.0010

References:

1. M. V. Tantashev, N. Yu. Trukhina, and V. L. Filippov, “Optical models of the atmosphere. Analysis and development paths,” Oboron. Tekh. Nos. 6–7, 3 (2010).
2. V. L. Filippov and M. V. Tantashev, “The Troposfera-2000 optico–geophysical model of the atmosphere,” Prikl. Fiz. No. 2, 114 (2004).
3. V. L. Filippov, M. V. Tantashev, N. Yu. Trukhina, and V. S. Yatsyk, “Calculating the transmittance of an arbitrarily oriented atmospheric path with high spectral resolution,” in Abstracts of Reports of the Fifth International Forum OPTICS EXPO-2009, All-Russia Exhibition Center, Moscow, 2009, pp. 68–69.
4. V. L. Tyuterev, “Global variational and effective methods of calculating the positions and intensities of triatomic molecules,” Opt. Atmos. Okeana 16, 245 (2003).
5. HITRAN-PC Installation and User Manual for Version 3.00, Univ. of South Florida, 2000, www.ontar.com.
6. PC ModWin 4 v1r1 ver 1.1 User Interface Environment for MODTRAN 4, Ontar Corporation, June 2002, www.ontar.com.
7. K. Ya. Kondrat’ev and N. I. Moskalenko, Thermal Radiation of the Planets (Gidrometizdat, Leningrad, 1977).
8. V. L. Filippov, A. S. Makarov, and V. P. Ivanov, Optical Weather in the Lower Troposphere, V. L. Filippov, ed. (Dom Pechati, Kazan, 1998).
9. V. L. Filippov, Aerosol Attenuation of Electromagnetic Radiation in Optical Channels from the Data of Experimental Studies (TsNII Informatsii i TÉI, Moscow, 1984).
10. L. S. Ivlev, Chemical Composition and Structure of Atmospheric Aerosols (LGU, Leningrad, 1982).
11. S. M. Sakerin, S. A. Beresnev, and S. Yu. Gorda, “Characteristics of the yearly course of spectral aerosol optical thickness of the atmosphere in the conditions of Siberia,” Opt. Atmos. Okeana 22, 566 (2009).
12. C. Salvaggio, “Use of LOWTRAN atmospheric parameters in synthetic image generation models,” Proc. SPIE 1938, 294 (1993).
13. A. Berk, L. S. Bernsten, and D. C. Robertson, “MODTRAN: A Moderate Resolution Model for LOWTRAN7,” AFGL Tech. Rep. GL-TR-89-0122 (Hanscom AFB, Mass., 1989), p. 38.
14. L. Elterman, “Relationships between vertical attenuation and surface meteorological range,” Appl. Opt. 9, 1804 (1970).
15. Yu. P. Dyabin, M. V. Tantashev, S. O. Mirumyants, and V. D. Marusyak, “Seasonal variations of the vertical profiles of the atmospheric aerosol in the lower troposphere,” Izv. Akad. Nauk SSSR, FAO 13, 1205 (1977).
16. K.-N. Liou, Principles of Radiation Processes in the Atmosphere (Gidrometeoizdat, Leningrad, 1984).
17. V. L. Filippov, A. S. Makarov, and V. P. Ivanov, “Construction of regional semiempirical models of optical characteristics of the atmosphere,” Dok. Akad. Nauk SSSR 265, 1353 (1982).
18. S. V. Samoı˘lova, Yu. S. Balin, G. P. Kokhanenko, and I. É. Penner, “Study of the vertical distribution of tropospheric aerosol layers from the data of multifrequency laser probing. Part 2. The vertical distribution of the optical characteristics of the aerosol in the visible region,” Opt. Atmos. Okeana 10, 1475 (1997).
19. V. S. Maksimyuk, M. V. Tantashev, and L. S. Semenov, “Multichannel nephelometer for determining the spectral transmittance of the atmosphere from on board an aircraft,” Opt. Mekh. Prom. No. 6, 20 (1987) [Sov. J. Opt. Technol. 54, 345 (1987)].
20. V. S. Maksimyuk and V. L. Filippov, “Flight studies of the dynamics of the aerosol that determines the variability of the optical weather,” Opt. Zh. 74, No. 1, 50 (2007) [J. Opt. Technol. 74, 39 (2007)].
21. V. L. Filippov and V. P. Ivanov, “How the aerosol attenuation of optical radiation depends on the moisture of the air,” Meteo. Gidro. No. 4, 65 (1979).
22. Handbook. The Atmosphere. (Handbook Data, Models) (Gidrometizdat, Leningrad, 1991).
23. N. V. Zadorina, N. A. Rumyantseva, M. V. Tantashev, and V. L. Filippov, How the Atmosphere Affects the Observation Conditions in the Short-Wavelength Region (Informtekhnika, Moscow, 1991).

24. A. S. Makarov and V. L. Filippov, “Attenuation of IR radiation in the atmosphere in the presence of precipitation,” Opt. Zh. No. 11, 33 (1996) [J. Opt. Technol. 63, 827 (1996)].
25. E. P. Avara, B. T. Miers, A. E. Wetmore, and J. A. Fitzgerrel, “The Climatology Module CLIMAT,” ARL-TR-273-8, June, 1998.
26. S. D. Kozlov, A. S. Makarov, and V. L. Filippov, Concerning the Structure of the Spectral Attenuation Coefficients of Radiation in the Windows of Transparency of the Atmosphere (TsNII Informatsii i TÉI, Moscow, 1981), No. 2618.
27. A. S. Makarov and V. L. Filippov, “Some materials of a study of the attenuation factors of (8–12-μm) radiation in the natural atmosphere,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 21, 368 (1978).
28. H. R. Carlon, “Molecular interpretation of the infrared water vapor continuum: comments,” Appl. Opt. 17, 3193 (1978).
29. M. S. Belen’kiı˘, G. O. Zadde, V. S. Kamarov, V. V. Nosov, A. A. Pershin, V. I. Khamarin, and V. G. Tsverava, An Optical Model of the Atmosphere, V. E. Zuev and V. V. Nosov, ed. (Izd. SO AN SSSR, Tomsk, 1987).