ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 538.913, 538.971

Molecular-dynamics study of the mechanism of short-pulse laser ablation of single-crystal and polycrystalline metallic targets

For Russian citation (Opticheskii Zhurnal):

Иванов Д.С., Липп В.П., Ретфельд Б., Гарсия М.Э. Исследование механизма короткоимпульсной лазерной абляции монокристаллических и поликристаллических металлических мишеней методом молекулярной динамики // Оптический журнал. 2014. Т. 81. № 5. С. 27–31.

 

Ivanov D.S., Lipp V.P., Rethfeld B., Garcia M.E. Molecular-dynamics study of the mechanism of short-pulse laser ablation of single-crystal and polycrystalline metallic targets [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 27–31.

For citation (Journal of Optical Technology):

D. S. Ivanov, V. P. Lipp, B. Rethfeld, and M. E. Garcia, "Molecular-dynamics study of the mechanism of short-pulse laser ablation of single-crystal and polycrystalline metallic targets," Journal of Optical Technology. 81(5), 250-253 (2014). https://doi.org/10.1364/JOT.81.000250

Abstract:

Short-pulse laser radiation focused on the surface of a material can simultaneously cause a large number of interconnected nonequilibrium processes that occur in a submicron interval within several picoseconds. Under the implemented extremal conditions, the ablation mechanism induced in a solid substance is extremely complex and has elicited numerous contradictory interpretations. A possible way to investigate its mechanism under strong nonequilibrium conditions is by using molecular dynamics. This method is used in this paper as a basis for a hybrid atomistically continuous model to describe how a picosecond laser pulse interacts with single-crystal and polycrystalline targets made from gold. The kinetics and the mechanism of induced ablation are studied. Differences are detected, and their causes are determined.

Keywords:

molecular dynamics, laser ablation, spallation, polycrystalline targets, electron–phonon interaction

OCIS codes: 000.6800, 140.3390, 140.7090, 160.3900

References:

1. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).
2. K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230 (2011).
3. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375 (1974).
4. J. L. Hostetler, A. N. Smith, and P. M. Norris, “Thin-film thermal conductivity and thickness measurements using picosecond ultrasonics,” Microscale Thermophys. Eng. 1, 237 (1997).
5. D. S. Ivanov and L. V. Zhigilei, “Effect of pressure relaxation on the mechanisms of short-pulse laser melting,” Phys. Rev. Lett. 91, 105701 (2003).
6. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. I. Anisimov, “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation,” Phys. Rev. B 65, 092103 (2002).
7. J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237 (2000).
8. D. S. Ivanov and B. C. Rethfeld, “The effect of pulse duration on the character of laser heating: photo-mechanical vs. photo-thermal damage of metal targets,” Appl. Surf. Sci. 255, 9724 (2009).
9. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
10. V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, and K. Nishihara, “Molecular-dynamics simulation of femtosecond ablation and spallation with different interatomic potentials,” Appl. Surf. Sci. 255, 9592 (2009).
11. D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short-laser-pulse surface nanostructuring onthin metal films: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys. A 111, 675 (2013).
12. S. Palomba and R. E. Palmer, “Patterned films of size-selected Au clusters on optical substrates,” J. Appl. Phys. 101, 044304 (2007).
13. C. Schäfer, H. M. Urbassek, L. V. Zhigilei, and B. J. Garrison, “Pressure-transmitting boundary conditions for molecular dynamics simulations,” Comput. Mater. Sci. 24, 421 (2002).
14. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short-pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Chem. Phys. 113, 11 892 (2009).
15. H. Jarmakani, B. Maddox, C. T. Wei, D. Kalantar, and M. A. Meyers, “Laser shock-induced spalling and fragmentation in vanadium,” Acta Mater. 58, 4604 (2010).
16. D. S. Ivanov, V. P. Veiko, E. Jakovlev, B. Rethfeld, and M. E. Garcia, “Molecular dynamics study of the short laser pulse ablation: quality and efficiency in production,” submitted to Appl. Phys. A.
17. P. E. Hopkins, P. M. Norris, L. M. Phinney, S. A. Policastro, and R. G. Kelly, “Thermal conductivity in nanoporous gold films during electron–phonon nonequilibrium,” J. Phys. Chem. C 2008, 418050 (2008).