УДК: 535.21, 538.971
Ionization of nanoparticles by supershort moderate-intensity laser pulses
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Груздев В.Е., Комолов В.Л., Пржибельский С.Г. Ионизация наночастиц сверхкороткими лазерными импульсами умеренной интенсивности // Оптический журнал. 2014. Т. 81. № 5. С. 35–42.
Gruzdev V.E., Komolov V.L., Przhibelskiy S.G. Ionization of nanoparticles by supershort moderate-intensity laser pulses [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 35–42.
V. E. Gruzdev, V. L. Komolov, and S. G. Przhibel’skiĭ, "Ionization of nanoparticles by supershort moderate-intensity laser pulses," Journal of Optical Technology. 81(5), 256-261 (2014). https://doi.org/10.1364/JOT.81.000256
This paper presents the results of the numerical modelling of electron emission from metallic nanoparticles under the action of femtosecond laser pulses with peak intensity from tenths of a terawatt to tens of terawatts per square centimeter. The model takes into account the effects of the excitation of the valence electrons of the nanoparticle due to multiphoton absorption, described by the Keldysh model, and the increase of the ionization potential due to the generation of positive charge in the nanoparticle during electron emission. The transition from multiphoton ionization to tunnel emission as the laser-radiation intensity increases is demonstrated, and it is shown that Fowler’s model and its modification give a substantial underestimate of both the peak photoemission rate and the total emission current.
nanoparticles, photoemission, femtosecond interactions, multiphoton photoelectric effect
Acknowledgements:This work was carried out with the state financial support of the leading universities of the Russian Federation (Subsidy 074-U01).
OCIS codes: 320.2250
References:1. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, Ch. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold nanocages covered by smart polymers for controlled release with near-infrared light,” Nat. Mater. 8, 935 (2009).
2. L. Au, D. Zheng, F. Zhou, Z.-Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2, 1645 (2008).
3. C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Del. 7, 577 (2010).
4. S. E. Skrabalak, J. Chen, Yu. Sun, X. Lu, L. Au, L. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587 (2008).
5. V. P. Krainov and M. B. Smirnov, “The evolution of large clusters under the action of ultrashort superintense laser pulses,” Phys. Usp. 43, 901 (2000).
6. M. B. Smirnov and V. P. Krainov, “Ionization of cluster atoms in a strong laser field,” Phys. Rev. A 69, 043201 (2004).
7. U. Saalmann, Ch. Siedschlag, and J. M. Rost, “Mechanisms of cluster ionization in strong laser pulses,” J. Phys. B 39, R39 (2006).
8. Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbaumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793 (2010).
9. M. Hu, H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Ultrafast laser studies of the photothermal properties of gold nanocages,” J. Phys. Chem. B 110, 1520 (2006).
10. M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
11. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].
12. N. B. Delone and V. P. Kraı˘nov, “Tunneling and barrier-suppression ionization of atoms and ions in a laser radiation field,” Usp. Fiz. Nauk 168, 531 (1998) [Phys. Usp. 41, 469 (1998)].
13. V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory),” Usp. Fiz. Nauk 174, 921 (2004) [Phys. Usp. 47, 855 (2004)].
14. T. E. Dermota, Q. Zhong, and A. W. Castleman, Jr., “Ultrafast dynamics in cluster systems,” Chem. Rev. 104, 1861 (2004).
15. M. Brack, “The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches,” Rev. Mod. Phys. 65, 677 (1993).
16. W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611 (1993).
17. L. B. Linford, “Recent developments in the study of the external photoelectric effect,” Rev. Mod. Phys. 5, 34 (1933).
18. S. I. Anisimov, V. A. Benderskiı˘, and D. Farkash, “Nonlinear photoelectric effect in metals under the action of laser radiation,” Usp. Fiz. Nauk 122, 185 (1977) [Sov. Phys. Usp. 20, 467 (1977)].
19. R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric field,” Proc. R. Soc. A 119, No. 781A, 173 (1928).
20. R. G. Forbes and H. B. Dean, “Reformulation of the standard theory of Fowler–Nordheim tunneling and cold-field electron emission,” Proc. R. Soc. A 463, 2907 (2007).
21. V. L. Komolov, V. E. Gruzdev, S. G. Przhibel’skiı˘, and D. S. Smirnov, “Dynamics of laser-induced damage of spherical nanoparticles by high-intensity ultrashort laser pulses,” Opt. Eng. 51, 121816 (2012).
22. I. E. Protsenko and A. V. Uskov, “Photoemission from metal nanoparticles,” Usp. Fiz. Nauk 182, 543 (2012) [Phys. Usp. 55, 508 (2012)].
23. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt Brace, Orlando, Fla., 1976).
24. H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48, 4729 (1977).
25. H. L. Skriver and N. M. Rosengaard, “Surface energy and work function of elemental metals,” Phys. Rev. B 46, 7157 (1992).
26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
27. H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B 1, 522 (1970).
28. V. E. Gruzdev, “Analysis of the transparent-crystal ionization model developed by L. V. Keldysh,” Opt. Zh. 71, No. 8, 14 (2004) [J. Opt. Technol. 71, 504 (2004)].
29. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).