УДК: 537.533.3
How plasma preprocessing affects the luminescence properties of porous silicon
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Галкин Н.Г., Ян Д.Т., Чусовитин Е.А., Расин А.Б., Галкин К.Н., Боженко М.В., Мараров В.В., Асташинский В.М., Кузьмицкий А.М. Влияние предварительной плазменной обработки на люминесцентные свойства пористого кремния // Оптический журнал. 2014. Т. 81. № 8. С. 14–18.
Galkin N.G., Yan D.T., Chusovitin E.A., Rasin A.B., Galkin K.N., Bozhenko M.V., Mararov V.V., Astashinskiy V.M., Kuzmitskiy A.M. How plasma preprocessing affects the luminescence properties of porous silicon [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 14–18.
N. G. Galkin, E. A. Chusovitin, A. B. Rasin, K. N. Galkin, M. V. Bozhenko, V. V. Mararov, D. T. Yan, V. M. Astashinskiĭ, and A. M. Kuz’mitskiĭ, "How plasma preprocessing affects the luminescence properties of porous silicon," Journal of Optical Technology. 81(8), 431-434 (2014). https://doi.org/10.1364/JOT.81.000431
Measurements have been made of the radiative properties of porous silicon obtained by anodic etching of plasma-processed p-type single-crystal silicon (100). It is found that the photoluminescence intensity of the test samples is significantly greater than that of porous silicon obtained on the surface of single-crystal silicon with no plasma preprocessing.
porous silicon, plasma preprocessing, photoluminescence
OCIS codes: 250.0250
References:1. A. F. Ioffe, Semiconductor Physics (Izd. Akad. Nauk SSSR, Moscow, 1957).
2. L. T. Canham, “Visible photoluminescence of porous Si,” Appl. Phys. Lett. 57, 1046 (1990).
3. S. Sawada, N. Namada, and N. Ookubo, “Mechanism of visible photoluminescence of porous silicon,” Phys. Rev. B 49, 5236 (1994).
4. D. Dimova-Malinovska, M. Sendova-Vasileva, T. Marinova, V. Krastev, M. Kamenova, and N. Tzenov, “Correlation between the photoluminescence and chemical bonding in porous silicon,” Thin Solid Films 276, 248 (1996).
5. L. T. Canham, A. Lioni, P. D. Calcott, A. J. Simons, C. Reeves, M. R. Houlton, J. P. Newey, K. J. Nash, and T. I. Cox, “On the origin of blue luminescence arising from atmospheric impregnation of oxidized porous silicon,” Thin Solid Films 276, 112 (1996).
6. F. Kozlovski, A. Wiedenhofer, W. Wagenseil, P. Steiner, and W. Lang, “Stability of photoluminescence and electroluminescence of porous silicon,” Thin Solid Films 276, 284 (1996).
7. T. Dittrich, H. Flietner, V. Yu. Timoshenko, and P. K. Kashkarov, “Influence of the oxidation process on the luminescence of HF-treated porous silicon,” Thin Solid Films 255, 149 (1995).
8. N. A. Sobolev, “Erbium-doped silicon—a new semiconductor material for optoelectronics,” Ros. Khim. Zh. 45, Nos. 5–6, 95 (2001).
9. S. W. Choi, W. B. Choi, Y. H. Lee, and B. K. Ju, “Effect of oxygen plasma treatment on anodic bonding,” J. Korean Phys. Soc. 38, No. 3, 207 (2001).
10. F. B. Baimbetov, B. M. Ibraev, and A. M. Zhukeshov, “Silicon surface treatment by pulsed nitrogen plasma,” Fiz. Tekh. Poluprovodn. 36, 197 (2002) [Semiconductors 36, 189 (2002)].
11. N. G. Galkin, E. A. Chusovitin, K. N. Galkin, V. M. Astashinski, A. M. Kuzmitski, and A. A. Mishchuk, “Morphology, optical properties and band structure parameters of monocrystalline silicon modified by compression plasma flow,” in Proceedings of Nanomeeting, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific Pub. Co., Singapore, 2007), p. 495.
12. V. M. Astashinski, S. I. Ananin, A. S. Emelyanenko, E. A. Kosytukevich, A. M. Kuzmitski, S. P. Zhvavy, and V. V. Uglov, “Bulk periodic structures formation on monocrystalline silicon surface under the action of compression plasma flow,” Appl. Surf. Sci. 253, 1866 (2006).
13. I. P. Dojcinovic, M. M. Kuraica, and J. Puric, “Diagnostics of silicon submicron cylindrical structures obtained by plasma flow action,” Vacuum 80, 1381 (2006).
14. Y. A. Petukhou, V. V. Uglov, N. T. Kvasov, A. V. Punko, I. L. Dorochevich, V. M. Astashinski, and A. M. Kuzmitski, “Formation of silicon-based nanostructures by compression plasma flow,” in Nanomaterials: Application and Properties (NAP) (2011), vol. 1, Part II, pp. 440–447.