УДК: 535.8
Photoinduced dissociation of complexes of cadmium selenide quantum dots with azo dye molecules
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Аннас К.И., Громова Ю.А., Орлова А.О., Маслов В.Г., Федоров А.В., Баранов А.В. Фотоиндуцированная диссоциация комплексов квантовых точек селенида кадмия с молекулами азокрасителя // Оптический журнал. 2014. Т. 81. № 8. С. 25–30.
Annas K.I., Gromova Yu.A., Orlova A.O., Maslov V.G., Fedorov A.V., Baranov A.V. Photoinduced dissociation of complexes of cadmium selenide quantum dots with azo dye molecules [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 25–30.
K. I. Annas, Yu. A. Gromova, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, "Photoinduced dissociation of complexes of cadmium selenide quantum dots with azo dye molecules," Journal of Optical Technology. 81(8), 439-443 (2014). https://doi.org/10.1364/JOT.81.000439
This paper demonstrates photoinduced dissociation of complexes of CdSe/ZnS quantum dots with molecules of 1,2-pyridylazo naphthol under the action of external radiation of various spectral compositions and powers. It is found that energy transport from the quantum dots to the azo dye molecule appreciably contributes to the dissociation rate of the complexes. An analysis of the dissociation rate made it possible for the first time to experimentally estimate the efficiency of intracomplex energy transfer under conditions in which no luminescence of the acceptor is observed.
semiconductor quantum dots, nonradiative resonance energy transfer, azo dye, complexes of quantum dots with organic molecules, photodissociation of complexes
OCIS codes: 260.2160, 260.5130
References:1. L. Liu, Q. Peng, and Y. Li, “An effective oxidation route to blue emission CdSe quantum dots,” Inorg. Chem. 47, 3182 (2008).
2. Y. Zhang, J. He, P. N. Wang, J. Y. Chen, Z. J. Lu, D. R. Lu, J. Guo, C. C. Wang, and W. L. Yang, “Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen,” J. Am. Chem. Soc. 128, 13396 (2006).
3. M. Mukhina, V. Maslov, A. Baranov, and A. Fedorov, “Photochemically induced polarization of the luminescence of CdSe/ZnS quantum rods in a porous matrix,” Nauch. Tekhnich. Vest. Inform. Tekhnol. Mekh. Opt. 5, No. 87, 133 (2013).
4. B. Hess, I. Okhrimenko, R. Davis, B. Stevens, Q. Schulzke, K. Wright, C. Bass, C. Evans, and S. Summers, “Surface transformation and photoinduced recovery in CdSe nanocrystals,” Phys. Rev. Lett. 86, 3132 (2001).
5. A. Orlova, M. Gubanova, V. Maslov, G. Vinogradova, A. Baranov, A. Fedorov, and I. Gounko, “Spectral-luminescence properties of the complexes formed by similarly charged CdTe quantum dots and tetrasulfophthalocyanine molecules,” Opt. Spektrosk. 108, 799 (2010) [Opt. Spectrosc. 108, 927 (2010)].
6. D. S. Kilin, K. Tsemekhman, O. V. Prezhdo, E. I. Zenkevich, and C. von Borczyskowski, “Ab initio study of exciton transfer dynamics from a core–shell semiconductor quantum dot to a porphyrin-sensitizer,” J. Photochem. Photobiol. A 190, 342 (2007).
7. M. Frasco and N. Chaniotakis, “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors 9, 7266 (2009).
8. T. Blaudeck, E. I. Zenkevich, F. Cichos, and C. von Borczyskowski, “Probing wave functions at semiconductor quantum-dot surfaces by non-FRET photoluminescence quenching,” J. Phys. Chem. C 112, 20251 (2008).
9. I. V. Martynenko, A. O. Orlova, V. G. Maslov, A. V. Baranov, A. V. Fedorov, and M. V. Artemyev, “Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments,” Beilstein J. Nanotech. 4, No. 1, 895 (2013).
10. A. O. Orlova, I. V. Martynenko, V. G. Maslov, A. V. Fedorov, Y. K. Gun’ko, and A. V. Baranov, “Investigation of complexes of CdTe quantum dots with the AlOH-sulphophthalocyanine molecules in aqueous media,” J. Phys. Chem. C 117, 23425 (2013).
11. A. V. Baranov, A. O. Orlova, V. G. Maslov, Y. A. Toporova, E. V. Ushakova, A. V. Fedorov, S. A. Cherevkov, M. V. Artemyev, T. S. Perova, and K. Berwick, “Dissociative CdSe/ZnS quantum dot-molecule complex for luminescent sensing of metal ions in aqueous solutions,” J. Appl. Phys. 108, 074306 (2010).
12. A. O. Orlova, Y. A. Gromova, V. G. Maslov, A. V. Prudnikau, M. V. Artemyev, A. V. Fedorov, and A. V. Baranov, “Formation of structures based on semiconductor quantum dots and organic molecules in track pore membranes,” J. Appl. Phys. 113, 214305 (2013).
13. Y. A. Gromova, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, “Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes,” Nano. Res. Lett. 8, No. 1, 452 (2013).
14. E. V. Ushakova, A. O. Orlova, and A. V. Baranov, “Study of the luminescence lifetime of CdSe/ZnS quantum dots in the case of the formation and dissociation of QD/organic molecule complexes in thin polymeric films,” Nauch. Tekhnich. Vest. SPbGU ITMO 64, No. 6, 20 (2009).
15. P. Reiss, J. Bleuse, and A. Pron, “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Lett. 2, 781 (2002).
16. V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Energy Transport of Electronic Excitation (Nauka, Moscow, 1977).
17. N. Korsunska, M. Dybiec, L. Zhukov, S. Ostapenko, and T. Zhukov, “Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots,” Semicond. Sci. Technol. 20, 876 (2005).