УДК: 621.373.8
A high-frequency laser with intracavity second-harmonic radiation conversion
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Алексеев В.Н., Волков А.С., Либер В.И., Пестов Ю.И. Высокочастотный лазер с внутрирезонаторным преобразованием излучения во вторую гармонику // Оптический журнал. 2014. Т. 81. № 9. С. 80–87.
Alekseev V.N., Volkov A.S., Liber V.I., Pestov Yu.I. A high-frequency laser with intracavity second-harmonic radiation conversion [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 9. P. 80–87.
V. N. Alekseev, V. I. Liber, Yu. I. Pestov, and A. S. Volkov, "A high-frequency laser with intracavity second-harmonic radiation conversion," Journal of Optical Technology. 81(9), 545-550 (2014). https://doi.org/10.1364/JOT.81.000545
The possibility of suppressing the radiation depolarization that appears in the active element of a YAG:Nd3+ laser pumped by linear laser-diode arrays with a pump-pulse-repetition rate of 1 kHz has been experimentally investigated. It is shown that the total suppression of the depolarization of the laser radiation is impeded by the appearance of birefringence in the crystals of the electrooptic shutters and the active medium of the Faraday rotator. This paper discusses the layout of a cavity with beam splitting at the polarization components, which made it possible to obtain an output pulse energy at the second harmonic greater than 10 mJ with intracavity conversion of radiation with a pulse width of 25 ns.
diode-pumped laser, radiation depolarization, thermal lens, intracavity second-harmonic conversion
OCIS codes: 140.3489, 140.3410, 140.3570, 140.3280
References:1. G. M. Zverev, Yu. D. Golyaev, E. A. Shalaev, and A. A. Shokin, Neodymium-Doped Yttrium Aluminum Garnet Lasers (Radio i Svyaz’, Moscow, 1985).
2. V. N. Alekseev, V. N. Kotylev, and V. I. Liber, “Study of the radiation characteristics of a scanning laser with a YAG: Nd3+ active element when it is pumped with linear arrays of laser diodes at a pulse-repetition rate of up to 400 Hz,” Opt. Zh. 76, No. 9, 14 (2009) [J. Opt. Technol. 76, 536 (2009)].
3. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, New York, 1975; Mir, Moscow, 1978).
4. A. V. Mezenov, L. H. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).
5. A. A. Mak, L. N. Soms, V. A. Fromzel’, and V. E. Yashin, Neodymium Glass Lasers (Nauka, Moscow, 1990).
6. C. A. Denman and S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” Proc. Adv. Solid State Lasers 26, 608 (1999).
7. M. R. Ostermeyer, G. Klemz, P. Kubina, and R. Menzel, “Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573 (2002).
8. E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Kvant. Elektron. (Moscow) 26, 59 (1999) [Quantum Electron. 26, 59 (1999)].
9. I. A. Pargachev, L. Ya. Serebrennikov, A. E. Mandel’, V. A. Krakovskiı˘, S. M. Shandarov, and G. I. Shvartsman, “Electrooptic modulators of laser radiation based on high-resistance KTP crystals,” Dokl. TU SURa 2, No. 24, Part 2, 115 (2011).
10. V. A. Konovalov, V. L. Pavlovich, and E. V. Raevskiı˘, “Highly efficient pulsed Nd:YAG lasers with radiation frequency conversion,” Kvant. Elektron. (Moscow) 32, 192 (2002) [Quantum Electron. 32, 192 (2002)].