ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 539.23

Electroabsorption of a semiconductor nanocuboid

For Russian citation (Opticheskii Zhurnal):

Пономарёва И.О., Леонов М.Ю., Косенков А.Г., Рухленко И.Д., Баранов А.В., Фёдоров А.В. Электропоглощение полупроводникового нанокубоида // Оптический журнал. 2015. Т. 82. № 11. С. 43–49.

 

Ponomareva I.O., Leonov M.Yu., Kosenkov A.G., Rukhlenko I.D., Baranov A.V., Federov A.V. Electroabsorption of a semiconductor nanocuboid [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 11. P. 43–49.

For citation (Journal of Optical Technology):

I. O. Ponomareva, M. Yu. Leonov, A. G. Kosenkov, I. D. Rukhlenko, A. V. Baranov, and A. V. Fedorov, "Electroabsorption of a semiconductor nanocuboid," Journal of Optical Technology. 82(11), 749-754 (2015). https://doi.org/10.1364/JOT.82.000749

Abstract:

This paper is devoted to the development of a universal physical model of the electron subsystem of a semiconductor nanocrystal in the form of a rectangular parallelepiped—a nanocuboid—lying in an external homogeneous electric field. The electroabsorption of a nanocuboid is computed in terms of the proposed model, and a comparative analysis of the electroabsorption of nanocrystals with various ratios of the sizes of the edges: quantum dots, nanorods, and nanoplates is carried out. It is shown that nanoplates are the most promising for creating electrooptic devices for photonics.

Keywords:

semiconductor nanocrystals, quantum dots, nanorods, nanoplates, Stark effect, electroabsorption

Acknowledgements:

This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (Grant 14.B25.31.0002 and State Job No. 3.17.2014/K). The Ministry of Education and Science of the Russian Federation is also supporting M. Yu. Leonov by means of a stipend of the President of the Russian Federation for young scientists and graduate students (2013–15).

OCIS codes: 160.4236, 300.6500

References:

1. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum-well structures—the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173 (1984).
2. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric-field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043 (1985).
3. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz–Keldysh effect,” Phys. Rev. B 33, 6976 (1986).
4. I. E. Itskevich, S. I. Rybchenko, I. I. Tartakovskii, S. T. Stoddart, A. Levin, P. C. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932 (2000).
5. P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791 (2004).
6. T. Y. Zhang and W. Zhao, “Franz–Keldysh effect and dynamical Franz–Keldysh effect of cylindrical quantum wires,” Phys. Rev. B 73, 245337 (2006).
7. S. Yu. Kruchinin and A. V. Fedorov, “Spectroscopy of persistent hole burning in the quantum-dot-matrix system: quantum-confined Stark effect and electroabsorption,” Phys. Solid State 49, 968 (2007).
8. H. N. Spector and J. Lee, “Stark effect in the optical absorption in cubical quantum boxes,” Physica B 393, 94 (2007).
9. A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett. 97, 031104 (2010).
10. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J. R. Coudevylle, X. Le Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light-hole-related direct-gap transitions in Ge quantum wells,” Appl. Phys. Lett. 102, 191107 (2013).
11. A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Yu. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678 (2014).
12. A. Oukerroum, E. Feddi, J. Bosch Bailach, J. Martinez-Pastor, F. Dujardin, and E. Assaid, “On the anomalous Stark effect in a thin disc-shaped quantum dot,” J. Phys.: Condens. Matter 22, 375301 (2010).
13. S. Ritter, P. Gartner, N. Baer, and F. Jahnke, “Anomalous Stark effect in semiconductor quantum dots,” Phys. Rev. B 76, 165302 (2007).
14. S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. A. Stinaff, M. L. Kerfoot, M. Scheibner, A. S. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2013).
15. T. Nann and W. M. Skinner, “Quantum dots for electro-optic devices,” ACS Nano 5, 5291 (2011).
16. J. Thoma, B. Liang, C. Reyner, T. Ochalski, D. Williams, S. P. Hegarty, D. Huffaker, and G. Huyet, “Electro-optic properties of GaInAsSb/GaAs quantum well for high-speed integrated optoelectronic devices,” Appl. Phys. Lett. 102, 013120 (2013).
17. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum-well second-order series-coupled microring resonators,” Opt. Express 21, 6377 (2013).
18. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of optical-phonon-assisted resonance secondary emission in semiconductor quantum dots,” Opt. Spectrosc. 93, 52 (2002).
19. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Acoustic phonon problem in nanocrystal-dielectric matrix systems,” Solid State Commun. 122, 139 (2002).
20. I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253 (2006).
21. I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238 (2006).
22. A. V. Baranov, V. Davydov, A. V. Fedorov, H. W. Ren, S. Sugou, and Y. Masumoto, “Coherent control of stress-induced InGaAs quantum dots by means of phonon-assisted resonant photoluminescence,” Phys. Status Solidi B 224, 461 (2001).
23. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913 (2012).
24. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, “New many-body mechanism of intraband carrier relaxation in quantum dots embedded in doped heterostructures,” Solid State Commun. 128, 219 (2003). 
25. A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon–phonon modes,” Semiconductors 38, 1065 (2004).
26. A. V. Fedorov and A. V. Baranov, “Intraband carrier relaxation in quantum dots mediated by surface plasmon–phonon excitations,” Opt. Spectrosc. 97, 56 (2004).
27. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum-dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010).
28. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Electron–electron scattering in a double quantum dot: effective-mass approach,” J. Chem. Phys. 133, 104704 (2010).
29. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Y. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, Saint Petersburg, 2011).