УДК: 535.399
Features of the optical properties of diffusion layers obtained by successive replacement of sodium ions with copper and silver ions in silicate glass
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дёмичев И.А., Сидоров А.И., Никоноров Н.В. Особенности оптических свойств диффузионных слоев, полученных при последовательном обмене ионов натрия на ионы меди и серебра в силикатном стекле // Оптический журнал. 2015. Т. 82. № 11. С. 66–70.
Dyomichev I.A., Sidorov A.I., Nikonorov N.V. Features of the optical properties of diffusion layers obtained by successive replacement of sodium ions with copper and silver ions in silicate glass [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 11. P. 66–70.
I. A. Demichev, A. I. Sidorov, and N. V. Nikonorov, "Features of the optical properties of diffusion layers obtained by successive replacement of sodium ions with copper and silver ions in silicate glass," Journal of Optical Technology. 82(11), 767-770 (2015). https://doi.org/10.1364/JOT.82.000767
It is experimentally shown that, when copper and silver ions are successively incorporated into silicate glass by the method of ion exchange, followed by heat treatment, metallic nanoparticles whose structure and composition depend on its temperature are formed in the glass. When the heat-treatment temperature is lower than the glass-transition temperature, spherical nanoparticles of silver and copper are formed in the glass; when the temperature is above the glass-transition temperature, nanostructures are formed that consist of a copper core and a silver shell. The absorption spectra of such structures are compared with the calculated spectrum of their absorption cross section.
nanoparticle, nanostructure, copper, silver, ion exchange, core shell, plasmon resonance
Acknowledgements:This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation as part of State Task of Project No. 3432.
OCIS codes: 160.2750; 160. 4236
References:1. G. I. Stegeman and W. E. Torruellas, “Nonlinear materials for information processing and communications,” Phil. Trans. R. Soc. London A 354, No. 1708, 745 (1996).
2. X. C. Yang, Z. H. Li, W. J. Li, J. X. Xu, Z. W. Dong, and S. X. Qian, “Optical nonlinearity and ultrafast dynamics of ion-exchanged silver nanoparticles embedded in soda-lime silicate glass,” Chin. Sci. Bull. 53, 695 (2008).
3. I. Tanahashi, Y. Manabe, and T. Tohda, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244 (1996).
4. H. B. Liao, R. F. Xiao, H. Wang, K. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817 (1998).
5. J. Olivares, J. Requejo-Isidro, R. del Coso, R. de Nalda, J. Solis, C. N. Afonso, A. L. Stepanov, D. Hole, and P. D. Townsend, “Large enhancement of the third-order optical susceptibility in Cu–silica composites produced by low-energy high-current ion implantation,” J. Appl. Phys. 90, 1064 (2001).
6. X. C. Yang, Z. W. Dong, H. X. Liu, J. X. Xu, and S. X. Qian, “Effects of thermal treatment on the third-order optical nonlinearity and ultrafast dynamics of Ag nanoparticles embedded in silicate glasses,” Chem. Phys. Lett. 475, Nos. 4–6, 256 (2009).
7. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. 3, 1647 (1986).
8. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
9. S. Thomas, S. K. Nair, E. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver–silica nanocomposites,” Nanotechnology 19, 075710 (2008).
10. G. Celep, E. Cottancin, J. Lermeé, M. Pellarin, L. Arnaud, J. R. Huntzinger, J. L. Vialle, M. Broyer, B. Palpant, O. Boisron, and P. Mélinon, “Optical properties of copper clusters embedded in alumina: an experimental and theoretical study of size dependence,” Phys. Rev. B 70, 165409 (2004).
11. A. Pinchu, A. Hilger, G. von Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15, 1890 (2004).
12. T. S. Anderson, R. H. Magruder, J. E. Wittig, D. L. Kinser, and R. A. Zuh, “Fabrication of Cu-coated Ag nanocrystals in silica by sequential ion implantation,” Nucl. Instrum. Methods Phys. Res. B 171, 401 (2000).
13. X. C. Yang, H. X. Liu, L. L. Li, J. F. Zhao, and M. Huang, “Review on influence factors of surface plasmon resonance for noble-metal nanoparticles,” Chin. J. Funct. Mater. 2, 341 (2010).
14. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410 (1999).
15. M. P. Andrews and S. C. O’Brien, “Gas-phase ‘molecular alloys’ of bulk immiscible elements: iron–silver (Fe x Agy ),” J. Phys. Chem. 96, 8233 (1992).
16. H. Yasuda, K. Mitsuishi, and H. Mori, “Particle-size dependence of phase stability and amorphous like phase formation in nanometer-sized Au–Sn alloy particles,” Phys. Rev. B 64, 94101 (2001).
17. H. G. Boyen, A. Ethirajan, G. Kastle, F. Weigl, P. Ziemann, G. Schmid, M. G. Garnier, M. Buttner, and P. Oelhafen, “Alloy formation of supported gold nanoparticles at their transition from clusters to solids: does size matter?” Phys. Rev. Lett. 94, 16804 (2005).
18. T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au–Ag nanoparticles,” J. Am. Chem. Soc. 124, 11989 (2002).
19. J. Yang, J. Y. Lee, and H. P. Too, “Core-shell Ag–Au nanoparticles from replacement reaction in organic medium,” J. Phys. Chem. B 109, 19208 (2005).
20. V. K. Pustovalov and W. Fritzsche, “Nonlinear dependences of optical properties of spherical core-shell silver–gold and gold–silver nanoparticles on their parameters,” Plasmonics 8, 983 (2013).
21. A. Y. Sonay, A. B. Caglayan, and M. Culha, “Synthesis of peptide-mediated Au-core–Ag-shell nanoparticles as surface-enhanced Raman-scattering labels,” Plasmonics 7, 77 (2012).
22. L. Qian and X. Yang, “Preparation and characterization of Ag(Au) bimetallic core–shell nanoparticles with new seed-growth method,” Colloids Surf. A 260, 79 (2005).
23. S. Bruzzone, M. Malvaldi, G. P. Arrighini, and C. Guidotti, “Near-field and far-field scattering by bimetallic nanoshell systems,” J. Phys. Chem. B 110, 11050 (2006).
24. X. B. Xu, Z. Yi, X. B. Li, Y. Y. Wang, X. Geng, J. S. Luo, B. C. Luo, Y. G. Yi, and Y. J. Tang, “Discrete dipole approximation simulation of the surface-plasmon resonance of core/shell nanostructure and the study of resonance cavity effect,” J. Phys. Chem. C 116, 24046 (2012).
25. J. Zhu, F. Zhang, J. J. Li, and J. W. Zhao, “Optimization of the refractive-index plasmonic sensing of gold nanorods by nonuniform silver coating,” Sens. Actuators B 183, 556 (2013).
26. J. S. Sekhon, H. K. Malik, and S. S. Verma, “DDA simulations of noble-metal and alloy nanocubes for tunable optical properties in biological imaging and sensing,” RSC Adv. 3, 15427 (2013).
27. A. Saha, S. K. Basiruddin, R. Sarkar, N. Pradhan, and N. R. Jana, “Functionalized plasmonic-fluorescent nanoparticles for imaging and detection,” J. Phys. Chem. C 113, 18492 (2009).
28. Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light-absorption enhancement in dye-sensitized solar cells with Au–Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
29. R. B. Jiang, H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)–(Ag shell) nanorods,” Adv. Mater. 24, OP200 (2012).
30. J. Zhu, F. Zhang, J. J. Li, and J. W. Zhao, “The effect of nonhomogeneous silver coating on the plasmonic absorption of Au–Ag core–shell nanorod,” Gold Bull. 47, Nos. 1–2, 47 (2013).
31. J. Zhu, “Surface plasmon resonance from bimetallic interface in Au–Ag core–shell structure nanowires,” Nanoscale Res. Lett. 4, 977 (2009).
32. O. Pena-Rodriguez and U. Pal, “Au/Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators,” Nanoscale 3, 3609 (2011).
33. Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, and Y. Fang, “The study of surface plasmon in Au/Ag core/shell compound nanoparticles,” Plasmonics 7, 509 (2012).
34. J. Zhu, J. J. Li, and J. W. Zhao, “The study of surface plasmon resonance in Au–Ag–Au three-layered bimetallic nanoshell: the effect of separate Ag layer,” Plasmonics 9, 435 (2014).
35. J. Zhu, J. J. Li, L. Yuan, and J. W. Zhao, “Optimization of three-layered Au–Ag bimetallic nanoshells for triple-bands surface plasmon resonance,” J. Phys. Chem. C 116, 11734 (2012).
36. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
37. S. Kumar, D. S. Rahman, A. L. Ali, and A. Kalita, “Surface plasmon tunability and emission sensitivity of ultrasmall fluorescent copper nanoclusters,” Plasmonics 8, 1457 (2013).
38. J. M. J. Santillán, F. A. Videla, L. B. Scaffardi, and D. C. Schinca, “Plasmon spectroscopy for subnanometric copper particles: dielectric function and core-shell sizing,” Plasmonics 8, 341 (2013).
39. V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. 36, 753 (2014).
40. U. Kriebig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
41. C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
42. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Artificial Media. A Handbook (Khimiya, Leningrad, 1984).