ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.016, 535.15, 535.041.08

Photoluminescence and photoconductivity of a thin film of oxidized nanoporous silicon doped with erbium ions

For Russian citation (Opticheskii Zhurnal):

Григорьев Л.В., Михайлов А.В. Фотолюминесценция и фотопроводимость тонкого слоя окисленного нанопористого кремния, легированного ионами эрбия // Оптический журнал. 2015. Т. 82. № 11. С. 79–84.

 

Grigoriev L.V., Mikhailov A.V. Photoluminescence and photoconductivity of a thin film of oxidized nanoporous silicon doped with erbium ions [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 11. P. 79–84.

For citation (Journal of Optical Technology):

L. V. Grigor’ev and A. V. Mikhaĭlov, "Photoluminescence and photoconductivity of a thin film of oxidized nanoporous silicon doped with erbium ions," Journal of Optical Technology. 82(11), 777-780 (2015). https://doi.org/10.1364/JOT.82.000777

Abstract:

This paper presents the results of an investigation of the photoluminescence and photoconductivity of a thin film of oxidized nanoporous silicon doped with erbium ions. Structural studies showed that silicon clusters of spherical shape and sizes from 5 to 15 nm are present in the layer. Investigation of the photoluminescence spectra showed that they include intense peaks characteristic of the luminescence of erbium ions. Study of the spectral dependences of the photoconductivity revealed that the nanocomposite under investigation has a complex system of the energy distribution of the traps responsible for the photostimulated generation and recombination of minority charge carriers.

Keywords:

oxidized porous silicon, photoluminescence, photoconductivity, rare earth elements ions doping, nanocomposite, erbium silicate

Acknowledgements:

This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (Identifier PNIÉR: RFMEFI58114X0006).

OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160

References:

1. I. H. Ray, Y. Lefevre, S. A. Schulz, N. Vermaulen, and T. E. Krauss, “Scaling of Raman amplification in realistic slow-light photonic-crystal waveguides,” Phys. Rev. B 84, 035306 (2011).
2. X. C. Liu, M. Myronov, A. Dobbie, R. J. Morris, and D. R. Leadley, “High-quality Ge/Si/Ge multiple quantum wells for photonic applications: grown by reduced-pressure chemical-vapour deposition and structural characteristics,” J. Phys. D 44, 055102 (2011).
3. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, “Optical properties of porous-system-based nanocomposites,” Usp. Fiz. Nauk 177, 619 (2007) [Phys.–Usp. 50, 595 (2007)].
4. A. V. Mikhaı˘lov, L. V. Grigor’ev, and P. P. Konorov, “Selective absorption in thermally oxidized nanoporous silicon,” J. Opt. Technol. 79, 99 (2012) [Opt. Zh. 79, No. 2, 54 (2012)].
5. X. J. Wang, T. Nakajima, H. Ishiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95, 040906 (2009).
6. S. Kuck, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515 (2001).
7. M. Stepikhova, L. Palmesthofer, W. Jantsch, H. J. von Bandeleben, and N. V. Gaponenko, “1.5-mm infrared photoluminescence phenomena in Er-doped porous silicon,” Appl. Phys. Lett. 74, 537 (1999).
8. V. P. Bondarenko, A. A. Klyshko, M. Balukani, and F. Ferrari, “Propagation losses in curved integrated optical waveguides based on oxidized porous silicon,” Pis’ma Zh. Tekh. Fiz. 31, No. 6, 17 (2005) [Tech. Phys. Lett. 31, 225 (2005)].
9. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon-based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
10. L. V. Grigor’ev and A. V. Mikhaı˘lov, “Photoluminescence in oxidized nanoporous silicon doped with erbium ions,” J. Opt. Technol. 82, 127 (2015) [Opt. Zh. 82, No. 2, 82 (2015)].
11. O. Polman, “Erbium-implanted thin-film photonic materials,” J. Appl. Phys. 82, 1 (1997).
12. S. K. Berashevich, S. K. Lazaruk, and V. E. Borisenko, “Electro-luminescence in porous silicon at a reverse bias voltage applied to the Schottky barrier,” Fiz. Tekh. Poluprovodn. 40, 240 (2006) [Semiconductors 40, 234 (2006)].
13. E. S. Demidov, V. V. Karzanov, N. E. Demidova, I. S. Rassolova, O. N. Gorshkov, M. O. Marychev, M. V. Stepikhova, and A. M. Sharonov, “Properties of erbium silicate doped with chromium in porous silicon,” Fiz. Tverd. Tela 49, 508 (2007) [Phys. Solid State 49, 532 (2007)].
14. A. G. Gullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
15. E. I. Terukov, A. N. Kuznetsov, E. O. Prashin, G. Weiser, and H. Kuehne, “Photoluminescence of erbium in amorphous hydrogenated phosphorous-doped silicon,” Fiz. Tekh. Poluprovodn. 31, No. 7, 869 (1997) [Semiconductors 31, 738 (1997)].
16. L. P. Pavlov, Methods of Determining the Main Parameters of Semiconductors (Vysshaya Shkola, Moscow, 1975).
17. V. Ya. Arsenin and A. N. Tikhonov, Numerical Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1991).
18. L. V. Grigor’ev, I. M. Grigor’ev, M. V. Zamoryanskaya, V. I. Sokolov, and L. M. Sorokin, “Propagation losses in curved integrated optical waveguides based on oxidized porous silicon,” Pis’ma Zh. Tekh. Fiz. 32, No. 17, 33 (2006) [Tech. Phys. Lett. 32, 750 (2006)].