ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.373.8

Study of a compact radiation source for fiber-optic interferometric phase sensors

For Russian citation (Opticheskii Zhurnal):

Беликин М.Н., Куликов А.В., Стригалев В.Е., Алейник А.С., Киреенков А.Ю. Исследование малогабаритного источника излучения для волоконно-оптических фазовых интерферометрических датчиков // Оптический журнал. 2015. Т. 82. № 12. С. 34–40.

 

Belikin M.N., Kulikov A.V., Strigalev V.E., Aleynik A.S., Kireenkov A.Yu. Study of a compact radiation source for fiber-optic interferometric phase sensors [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 12. P. 34–40.

For citation (Journal of Optical Technology):

M. N. Belikin, A. V. Kulikov, V. E. Strigalev, A. S. Aleĭnik, and A. Yu. Kireenkov, "Study of a compact radiation source for fiber-optic interferometric phase sensors," Journal of Optical Technology. 82(12), 805-809 (2015). https://doi.org/10.1364/JOT.82.000805

Abstract:

This paper discusses the optical and electrical characteristics of the RayCan RC32 laser diode, with a vertical cavity that emits at a wavelength of 1550 nm, as a function of various operating regimes. The possibility of using laser diodes with a vertical cavity in fiber-optic interferometric phase sensors is considered. An experimental method of obtaining the coherence function of a laser diode with a vertical cavity is also used to obtain the dependences of the variation of the central wavelength of the radiation and the width of the spectral components when the laser is directly modulated in current at various frequencies and with various inverse duty cycles.

Keywords:

laser diode with vertical cavity emitting at wavelength of 1550 nm, fiber-optic interferometric phase sensor

OCIS codes: 140.7260, 140.3510, 140.3600

References:

1. E. Udd and W. B. Spillman, Jr., eds., Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 2011; Tekhnosfera, Moscow, 2008).
2. J. Koeth, M. Fischer, M. Legge, J. Seufert, and R. Werner, “Lasers with distributed Bragg lattices based on quantum wells and dots and with quantum cascades,” Fotonika 10(4), 12–16 (2008).
3. V. V. Akparov, V. P. Duraev, and S. V. Medvedev, “Single-frequency VBR laser for DWDM at a wavelength of 1550 nm,” http://nolatech.ru.
4. I. Kenichi, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
5. R. Michalzik, ed., VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Vol. 166 of Springer Series in Optical Sciences (Springer, 2013), pp. 3–15.
6. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
7. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
8. T. E. Sale, “Cavity and reflector design for vertical cavity surface emitting lasers,” IEEE Proc. Optoelectron. 142(1), 37–43 (1995).
9. S. F. Yu, Analysis and Design of Vertical Cavity Surface-Emitting Lasers (Wiley, New Jersey, 2003).
10. T. E. Sale, Vertical Cavity Surface-Emitting Lasers (Wiley, New Jersey, 2005).
11. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
12. K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
13. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
14. E. Kapon, “Wafer-fused VCSELs shape up for enterprise applications,” Compd. Semicond., 25–26 (January/February 2005).
15. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006).
16. R. Michalzik and K. J. Ebeling, “Modeling of gain-guided vertical-cavity laser diodes,” Microelectron. Eng. 19, 123–126 (1992).
17. R. R. Hasan and R. Basak, “Characteristics of a designed 1550 nm AlGaInAs/InP MQW VCSEL,” Int. J. Multidiscip. Sci. Eng. 4 (1), 1–9 (2013).