ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.391.837.681.3]:[621, 681:723

System for fluorescence diagnosis and photodynamic therapy of cervical disease

For Russian citation (Opticheskii Zhurnal):

U. Kang, Папаян Г.В., Обухова Н.А., S. J. Bae, D. S. Lee, M. W. Jung, Березин В.Б., Мотыко А.А., Плохих Д.П., Слободенюк С.А. Комплекс для флуоресцентной диагностики и фотодинамической терапии заболеваний шейки матки // Оптический журнал. 2015. Т. 82. № 12. С. 47–59.

 

U. Kang, Papayan G.V., Obukhova N.A., S. J. Bae, D. S. Lee, M. W. Jung, Berezin V.B., Motyko A.A., Plokhikh D.P., Slobodenyuk S.A. System for fluorescence diagnosis and photodynamic therapy of cervical disease [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 12. P. 47–59.

For citation (Journal of Optical Technology):

U. Kang, G. V. Papayan, N. A. Obukhova, S. J. Bae, D. S. Lee, M. W. Jung, V. B. Berezin, A. A. Motyko, D. P. Plokhikh, and S. A. Slobodenyuk, "System for fluorescence diagnosis and photodynamic therapy of cervical disease," Journal of Optical Technology. 82(12), 815-823 (2015). https://doi.org/10.1364/JOT.82.000815

Abstract:

This system is designed for development of fluorescence diagnosis and photodynamic therapy methods for cervical pathologies. Diagnosis is performed on the basis of multispectral autofluorescence images obtained using various types of excitation, as well as images in reflected white light after exposure to acetic acid. Said diagnosis is performed using an expert system for automatic recognition of cervical neoplasms; this expert system has been validated using verified images obtained from 151 patients. Based on test results, a sensitivity of 0.85–0.95 and specificity of 0.78–0.97 are obtained, depending on the scope of the differential diagnosis. It is shown that fluorescence images can be used to monitor photodynamic therapy.

Keywords:

colposcopy, cervical cancer, fluorescence diagnostics, autofluorescence, photodynamic therapy, computer vision

Acknowledgements:

The authors thank the Seoul Metropolitan Government and the Seoul Development Institute for their support of this work within the framework of the international program “Inviting & Supporting Project of Global Leading Institutions” (funds WR100001 for Russia Science Seoul). They also thank Jeong-Yeol Park (Asian Medical Center) for careful preparation of the material used in the autofluorescence diagnosis database and A. R. Khachaturyan (D. O. Ott Scientific Research Institute for Obstetrics and Gynecology) for medical consultations and development of photodynamic therapy techniques. This work was performed with the support of the Russian Foundation for Basic Research (RFFI) (Grant 15-07-00188).

OCIS codes: 170.0170, 170.3880, 170.3890, 170.4580

References:

1. H. H. Chung, M. J. Jang, K. W. Jung, Y. J. Won, H. R. Shin, J. W. Kim, and H. P. Lee, “Cervical cancer incidence and survival in Korea: 1993–2002,” Int. J. Gynecol. Cancer 16(5), 1833–1838 (2006).
2. H. B. Cho and J. H. Kim, “Treatment of the patients with abnormal cervical cytology: a “see-and-treat” versus three-step strategy,” J. Gynecol. Oncol. 20(3), 164–168 (2009).
3. H. Bauer, Color Atlas of Colposcopy (GEOTAR-Media, Moscow, 2009).
4. M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91, 626–631 (1998).
5. M. Schiffman and N. Wentzensen, “Issues in optimising and standardising the accuracy and utility of the colposcopic examination in the HPV era,” Ecancer 9(530) (2015).
6. H. Lange and D. G. Ferris, “Computer-aided-diagnosis (CAD) for colposcopy,” Proc. SPIE 5747, 71–84 (2005).
7. C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron. 14(1), 29–42 (2008).
8. R. Wade, E. Spackman, M. Corbett, S. Walker, K. Light, R. Naik, M. Sculpher, and A. Eastwood, “Adjunctive colposcopy technologies for examination of the uterine cervix–DySIS, LuViva Advanced Cervical Scan and Niris Imaging System: a systematic review and economic evaluation,” Health Technol. Assess. 17(8), 1–240 (2013).
9. http://truscreen.com/.
10. A. Singer, “New optoelectric techniques in screening for pre-cancerous cervical disease,” in Proceedings of the International Scientific and Practical Conference on Treatment of Cervical Cancer: A View of the Future (Moscow, 2008), pp. 120–130.
11. I. Ia. Barskiĭ, E. M. Brumberg, A. P. Grammatin, M. A. Ivanov, N. M. Ivanova, and V. A. Jakubenas, “Contact fluorescence microscope for medical studies,” Sov. J. Opt. Technol. 34(12) (1967) [Opt.-Mekh. Prom-st. (12), 30–34 (1967)].
12. Ch. Yu. Vikshraitis, N. V. Garmanova, and A. V. Jakubenas, Contact Fluorescence Colpomicroscopy (Mokslas, Vilnius, 1979).

13. M. C. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Express 47, 2306 (2011).
14. M. C. Pierce, Y. Y. Guan, M. K. Quinn, X. Zhang, W. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila). 5(11), 1273–1279 (2012).
15. R. R. Allison, R. Cuenca, G. H. Downie, M. E. Randall, V. S. Bagnato, and C. H. Sibata, “PD/PDT for gynecological disease: a clinical review,” Photodiagn. Photodyn. Ther. 2(1), 51–63 (2005).
16. R. Vanseviciute, J. Venius, and S. Letautiene, “5-aminolevulinic acid-based fluorescence diagnostics of cervical preinvasive changes. Review,” Medicina (Kaunas) 50(3), 137–143 (2014).
17. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia,” Gynecol. Oncol. 52, 31–38 (1994).
18. M. Mitchell, S. B. Cantor, C. Brookner, U. Utzinger, and D. Schottenfeld, “Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix,” Obstet. Gynecol. 93(3), 462–470 (1999).
19. C. K. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg. Med. 24(1), 29–37 (1999).
20. H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” Br. J. Obstet. Gynecol. 109(8), 947–951 (2002).
21. S. K. Chang, M. Follen, A. Malpica, and U. Utzinger, “Optimal excitation wavelengths for discrimination of cervical neoplasia,” IEEE Trans. Biomed. Eng. 49, 1102–1111 (2002).
22. R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,” Lasers Surg. Med. 29, 118–127 (2001).
23. U. Gustafsson, E. McLaughlin, E. Jacobson, J. Hakansson, P. Troy, M. DeWeert, S. Palsson, M. Soto Thompson, S. Svanberg, A. Vaitkuviene, and K. Svanberg, “In vivo fluorescence and reflectance imaging of human cervical tissue,” Proc. SPIE 5031, 521–530 (2003).
24. S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 1–11 (2005).
25. J. A. Freeberg, D. M. Serachitopol, N. McKinnon, R. Price, E. N. Atkinson, D. D. Cox, C. MacAulay, R. Richards-Kortum, M. Follen, and B. Pikkula, “Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe,” J. Biomed. Opt. 12(3), 034015 (2007).
26. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements and implications,” J. Biomed. Opt. 6, 385–396 (2001).
27. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004).
28. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
29. N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
30. U. Gustafsson, E. McLaughlin, E. Jacobson, J. Hakansson, P. Troy, M. DeWeert, S. Palsson, M. Soto Thompson, S. Svanberg, A. Vaitkuviene, and K. Svanberg, “In vivo fluorescence and reflectance imaging of human cervical tissue,” Proc. SPIE 5031, 521–530 (2003).
31. J. M. Benavides, S. Chang, S. Y. Park, R. Richards-Kortum, N. Mackinnon, C. MacAulay, A. Milbourne, A. Malpica, and M. Follen, “Multispectral digital colposcopy for in vivo detection of cervical cancer,” Opt. Express 11(10), 1223–1236 (2003).
32. S. Park, M. Follen, A. Milbourne, H. Rhodes, A. Malpica, N. MacKinnon, C. MacAulay, M. Markey, and R. Richards-Kortum, “Automated image analysis of digital colposcopy for the detection of cervical neoplasia,” J. Biomed. Opt. 13, 14–29 (2008).
33. O. V. Makarov, A. Z. Khashukoeva, and O. B. Otdelnova, “Photodynamic therapy of hyperplastic processes in the endometrium using the photosensitizer Fotoditazin,” Ross. Zh. Bioterapevticheskiĭ, No. 1, 21 (2007).
34. O. I. Trushina, E. G. Novikova, V. V. Sokolov, E. V. Filonenko, V. I. Chisov, and G. N. Vorozhtsov, “Photodynamic therapy of virus-associated precancer and early stages cancer of cervix uteri,” Photodiagn. Photodyn. Ther. 5(4), 256–259 (2008).
35. P. Soergel, X. Wang, H. Stepp, H. Hertel, and P. Hillemanns, “Photodynamic therapy of cervical intraepithelial neoplasia with hexaminolevulinate,” Lasers Surg. Med. 40(9), 611–615 (2008).
36. Z. Ying, X. Li, and H. Dang, “5-aminolevulinic acid-based photodynamic therapy for the treatment of condylomata acuminata in Chinese patients: a meta-analysis,” Photodermatol. Photoimmunol. Photomed. 29(3), 149–159 (2013).
37. M. C. Choi, S. G. Jung, H. Park, S. Y. Lee, C. Lee, Y. Y. Hwang, and S. J. Kim, “Photodynamic therapy for management of cervical intraepithelial neoplasia II and III in young patients and obstetric outcomes,” Lasers Surg. Med. 45(9), 564–572 (2013).
38. A. R. Khachaturian, G. V. Papayan, and N. N. Petrishchev, “Fluorescence monitoring in photodynamic therapy of non-malignant virus-associated cervical disease,” Zh. Akush. Zhensk. Bolez. 5, 59–65 (2013).
39. U. K. Kang, G. V. Papayan, V. B. Berezin, S.-J. Bae, S. V. Kim, and N. N. Petrishchev, “Multispectral fluorescence organoscopes for in vivo studies of laboratory animals and their organs,” J. Opt. Technol. 78(9), 623–628 (2011) [Opt. Zh. 78(9), 82–90 (2011)].
40. U. K. Kang and G. V. Papayan, “Apparatus for photodynamic therapy and photodetection,” U.S. patent 8,382,812 (2013).
41. G. V. Papayan, N. N. Petrishchev, A. V. Panchenko, U. Kang, S. V. Kim, and V. B. Berezin, “Multispectral autofluorescence diagnosis of cervical cancer in experimental models,” in Photodynamic Therapy and Fluorescence Diagnosis, N. N. Petrishchev, ed. (Lan, Saint Petersburg, 2011), pp. 273–281.
42. S. V. Kim, V. B. Berezin, U. Kang, G. V. Papayan, and N. N. Petrishchev, “Experience in multispectral autofluorescence diagnosis and photodynamic therapy of TC-1 tumor in BALB mice,” in Photodynamic Therapy and Fluorescence Diagnosis, N. N. Petrishchev, ed. (Lan, Saint Petersburg, 2011), pp. 285–291.
43. G. V. Papayan, N. N. Petrishchev, S. V. Kim, H. H. Kim, V. B. Berezin, and U. Kang, “Capabilities of multispectral autofluorescence visualization of malignant tumors,” Fotodin. Terap. Fotodiag. (4), 3–11 (2014).
44. G. V. Papayan, V. B. Berizin, U. Kang, S. J. Bae, S. A. Slobodeniuk, and S. V. Kim, “Digital multispectral television system for fluorescence organoscopy,” in Proceedings of the 8th International Television Conference: Image Transmission and Processing (LÉTI, Saint Petersburg, 2011), pp. 72–78.
45. J. Han, M. Kamber, and J. Pel, Data Mining Concepts and Techniques (Morgan Kaufmann Publishers Inc., San Francisco, 2011).
46. U. Kang, S. J. Bae, G. V. Papayan, and N. A. Obukhova, “Image analysis in an automated fluorescence system for diagnosis of cervical cancer (preclinical phase),” Izv. Vyssh. Uchebn. Zaved. Ross. Radioelektron. (2), 79–87 (2012).
47. L. Breiman, “Random forests,” J. Mach. Learn. 45, 5–32 (2001).
48. N. Meinshausen, “Quantile regression forests,” J. Mach. Learn. Res. 7, 983–999 (2006).