ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Large-area three-dimensional profilometer based on digital micromirror device

For Russian citation (Opticheskii Zhurnal):

Yunbo Zhang, Aijun Zeng, Huijie Huang, Wenmei Hou Large-area three-dimensional profilometer based on digital micromirror device [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 2. С. 51–56.

 

Yunbo Zhang, Aijun Zeng, Huijie Huang, Wenmei Hou Large-area three-dimensional profilometer based on digital micromirror device [in English] // Opticheskii Zhurnal. 2015. V. 82. № 2. P. 51–56.

For citation (Journal of Optical Technology):

Yunbo Zhang, Aijun Zeng, Huijie Huang, and Wenmei Hou, "Large-area three-dimensional profilometer based on digital micromirror device," Journal of Optical Technology. 82(2), 102-107 (2015). https://doi.org/10.1364/JOT.82.000102

Abstract:

The single pinhole scanning confocal microscope is suffering from scanning speed. This paper studies a large-area profilometer with multiple virtual pinholes. A digital micromirror device comprised of millions of micromirrors generates multiple virtual pinholes which are utilized for parallel scanning. The key parameters affecting the measurement can be configured conveniently by the digital micromirror device controller. The working principles of a digital micromirror device base confocal microscope have been analyzed and a setup has been built up. Tomographic images are acquired and the depth response curves are extracted. A structured silicon sample is measured and three-dimensional results have been reconstructed. The system repeatability is better than 60 nm.

Keywords:

confocal microscope system, digital micromirror device, tomographic image

Acknowledgements:

This work is supported by National Science and Technology Major Project of China (Grant No. 2011ZX02402), International Science & Technology Cooperation Program of China (Grant No. 2011DFR10010) and State Key Laboratory of Applied Optics, China (No. Y1Q03FQK06).

OCIS codes: 170.1790, 180.6900, 110.6880

References:

1. Kim T., Kim S.H., Do D.H., Yoo H.I., and Gweon D.G. Chromatic Confocal Microscopy with a Novel Wavelength Detection Method Using Transmittance // Opt. Exp. 2013. V. 21. № 5. P. 6286–6294.
2. Minsky M. Memoir on Inventing the Confocal Scanning Microscope // Scanning. 1988. V. 10. № 4. P. 128–138.
3. Summers J.A., Yang T., Tuominen M.T., and Hudgings J.A. High Contrast, Depth-Resolved Thermoreflectance Imaging Using a Nipkow Disk Confocal Microscope // Rev. Sci. Instrum. 2010. V. 81. № 1. P. 014902.
4. Tiziani H.J., and Uhde H.M. Three-Dimensional Analysis by a Microlens-Array Confocal Arrangement // Appl. Opt. 1994. V. 33. № 4. P. 567–572.
5. Zhang Y.B., Strube S., Molnar G., Danzebrink H.U., Dai G.L., Bosse H., and Hou W.M. Parallel Large-Range Scanning Confocal Microscope Based on A Digital Micromirror Device // Optik. 2013. V. 124. № 13. P. 1585–1588.
6. Chen L.C., Kao W.C., and Huang Y.T. Autimatic Full-Field 3-D Profilometry Using White Light Concoal Microscopy with DMD-based Fringe Project // Mater. Sci. Forum. 2006. V. 505–507. № 61. P. 361–366.
7. Dudley D., Duncan W., and Slaughter J. Emerging Digital Micromirror Device (DMD) Applications // Proc. SPIE. 2003. V. 4985. P. 14–25.
8. Gu M. Principles of Three-Dimensional Imaging in Concoal Microscopes // Singapore, Textstream, 1996.
9. Corle T.R., Chou C.-H., and Kino G.S. Depth Response of Confocal Optical Microscopes // Opt. Lett. 1986. V. 11. № 12. P. 770–772.
10. Sheppard C.J.R., and Matthews H.J. The Extended-Focus, Auto-Focus and Surface-Profiling Techniques of Confocal Microscope // J. Mod. Opt. 1988. V. 35. № 1. P. 145–154.