УДК: 546.57, 535.015
How alkali-metal and silver ions affect the formation of structural defects in silicate glasses after x-irradiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Голубков В.В., Игнатьев А.И., Никоноров Н.В., Сидоров А.И., Трофимов А.О., Цехомский В.А. Влияние ионов щелочных металлов и серебра на образование структурных дефектов в силикатных стёклах после рентгеновского облучения // Оптический журнал. 2015. Т. 82. № 2. С. 57–63.
Golubkov V.V., Ignatiev A.I., Nikonorov N.V., Sidorov A.I., Trofimov A.O., Tsekhomskiy V.A. How alkali-metal and silver ions affect the formation of structural defects in silicate glasses after x-irradiation [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 2. P. 57–63.
V. V. Golubkov, A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, A. O. Trofimov, and V. A. Tsekhomskiĭ, "How alkali-metal and silver ions affect the formation of structural defects in silicate glasses after x-irradiation," Journal of Optical Technology. 82(2), 108-112 (2015). https://doi.org/10.1364/JOT.82.000108
This article discusses how x-irradiation affects the formation of silver clusters, based on spectroluminescent studies. Increasing the x-ray irradiation dose increases the optical density of the test glasses in the 300–450-nm region and causes an absorption band to appear in the 300-nm region in the case of glasses that contain Na+. Replacing Na+ with Li+ substantially increases the absorption in the 250–300-nm region, while replacing Na+ with K+ displaces the absorption band into the 313-nm region. Intense luminescence was observed in the 450–820-nm region in all the test glasses after x-irradiation. These results are explained by taking into account the change of the structure of the glass and the physicochemical properties when various alkali oxides are introduced. An analysis of the luminescence properties of the test glasses made it possible to assume that negatively charged clusters of silver and complexes of the form Agn-Me were formed, where Me=Li+, Na+, K+.
silicate glass, luminescence, absorption, silver cluster
Acknowledgements:This work was carried out with the state financial support of the Russian Scientific Fund (Contract No. 14-23-00136).
OCIS codes: 160.4236, 300.0300
References:1. D. P. Perez, ed., Silver Nanoparticles (In-Tech, Vukovar, 2010).
2. M. Schwartz, ed., Encyclopedia of Smart Materials, vol. 2 (John Wiley & Sons, Inc., New York, 2002).
3. V. P. Afanas’ev, V. N. Vasil’ev, A. I. Ignat’ev, E. V. Kolobkova, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskiı˘, “New luminescent glasses and prospects of using them in solar energy,” Opt. Zh. 80, No. 10, 69 (2013) [J. Opt. Technol. 80, 635 (2013)].
4. V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. 36, 753 (2014).
5. A. I. Ignat’ev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photothermorefractive glasses,” Opt. Spektrosk. 114, 838 (2013) [Opt. Spectrosc. 114, 769 (2013)].
6. D. S. Agafonova, V. I. Egorov, A. I. Ignat’ev, and A. I. Sidorov, “New luminescent glasses and prospects of using them in solar energy,” Opt. Zh. 80, No. 8, 51 (2013) [J. Opt. Technol. 80, 506 (2013)].
7. E. R. de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: analogy with photography,” Phys. Rev. B 76, 205431 (2007).
8. T. Isaji, T. Wakasugi, K. Fukumi, and K. Kadono, “Reversible redox and clusterization of silver in glasses by X-ray irradiation and heat treatment: mechanism of photochromic behavior of halogen-free silver-doped glass,” Chem. Phys. Lett. 522, 72 (2012).
9. M. Eichelbaum, K. Rademann, A. Hoell, D. M. Tatchev, W. Weigel, R. Stoberand, and G. Pacchioni, “Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses,” Nanotechnol. 19, 135701 (2008).
10. M. Tomozawa and R. H. Doremus, eds., Treatise on Materials Science and Technology (Glass II) (Academic Press, New York, 1979), vol. 17.
11. G. Pacchioni, L. Skuja, and D. L. Griscom, eds., Defects in SiO 2 and Related Dielectrics: Science and Technology (Springer Link, Berlin, 2000), vol. 2.
12. L. Jiang and J. Sheng, “Solarization of silver-doped soda-lime silicate glass containing X-ray induced color centers,” Mater. Sci. 40, 5177 (2005).
13. D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxyl radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239, 66 (1998).
14. A. N. Trukhin, “Solids localized states in wide-gap glasses. Comparison with relevant crystals,” J. Non-Cryst. Solids 189, 1 (1995).
15. J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rosch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectra of gold atoms deposited on SiO2 from cavity ring-down spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005).
16. A. Del Vitto, G. Pacchioni, K. H. Lim, N. Rosch, J.-M. Antonietti, M. Michalski, U. Heiz, and H. Jones, “Gold atoms and dimers on amorphous SiO2 : calculation of optical properties and cavity-ring down spectroscopy measurements,” Phys. Chem. B 109, 19876 (2005).
17. S. Fedrigo, W. Harbich, and J. Buttet, “Optical response of Ag 2, Ag3 , Au 2 , and Au3 in argon matrices,” Chem. Phys. 99, 5712 (1993).
18. W. Zheng and T. Kurobori, “Assignments and optical properties of X-ray-induced color centers in blue and orange radiophotoluminescent silver-activated glasses,” Luminescence 131, 36 (2011).
19. C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, “Fluorescence and excitation spectra of Ag 4 in an argon matrix,” Chem. Phys. Lett. 313, 105 (1999).
20. S. Zhao, Z.-P. Liu, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of small neutral and charged silver cluster hydrides,” Phys. Chem. A 110, 11537 (2006).
21. J. Zhou, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of carbon monoxide with small neutral and charged silver clusters,” Phys. Chem. A 110, 7167 (2006).
22. S. Zhao, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of chlorine atom with small neutral and charged silver clusters,” Chem. Phys. 122, 144701 (2005).
23. J. Zhou, Z.-H. Li, W.-N. Wang, and K.-N. Fan, “Density functional study of the interaction of molecular oxygen with small neutral and charged silver clusters,” Chem. Phys. Lett. 421, 448 (2006).
24. L. Sun, A. Zhang, S. Su, H. Wang, J. Liu, and J. Xiang, “A DFT study of the interaction of elemental mercury with small neutral and charged silver clusters,” Chem. Phys. Lett. 517, 227 (2011).
25. D. A. Kochetkov, N. V. Nikonorov, G. A. Sycheva, and V. A. Tsekhomskii, “The effect of gold nanoparticles on crystallization processes in photostructured lithium-silicate glass,” Glass Phys. Chem. 39, 351 (2013).
26. S. Nagata, T. Kawai, and T. Hirai, “Energy transfer from CsI host lattice to Ag-centers in CsI: Ag-crystals,” Opt. Mater. 35, 1257 (2013).
27. D. B. Pedersen and S. Wang, “Real-time experiments on the spontaneous restructuring of self-assemblies of naked Ag nanoparticle anions: how close can two nanoparticles get?” Phys. Chem. C 116, 3258 (2012).
28. O. V. Mazurin, Electrical Properties of Glass (Goskhimizdat, Leningrad, 1962).
29. V. A. Tsekhomskiı˘, O. V. Mazurin, and K. K. Evstrop’ev, “What is the nature of the conductivity of aluminosilicate glasses?” Fiz. Tverd. Tela 5, 586 (1963) [Phys. Solid State 5, 426 (1964)].