УДК: 535.016, 535.15, 535.041.08
Photoluminescence in oxidized nanoporous silicon doped with erbium ions
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Григорьев Л.В., Михайлов А.В. Фотолюминесценция в окисленном нанопористом кремнии, легированном ионами эрбия // Оптический журнал. 2015. Т. 82. № 2. С. 82–86.
Grigoriev L.V., Mikhailov A.V. Photoluminescence in oxidized nanoporous silicon doped with erbium ions [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 2. P. 82–86.
L. V. Grigor’ev and A. V. Mikhaĭlov, "Photoluminescence in oxidized nanoporous silicon doped with erbium ions," Journal of Optical Technology. 82(2), 127-130 (2015). https://doi.org/10.1364/JOT.82.000127
This paper presents the results of a study of the structural, optical, and photoluminescence properties of a thin layer of oxidized nanoporous silicon doped with erbium ions. Structural studies have shown that silicon nanoclusters of spherical shape with dimensions from 5 to 35 nm are present in the layer. The transmittance of a layer of oxidized nanoporous silicon doped with erbium ions in the wavelength region from 1.2 to 2.0 μm was at least 54%, and this makes it possible to use it to create active planar waveguides that can be used in integrated optical structures of silicon photonics. Investigation of the photoluminescence spectra at temperatures of 100 and 300 K showed the presence of peaks that characterize the luminescence of erbium ions.
oxidized nanoporous silicon, silicon photonics, transmittance spectrum, photoluminescence, doping by ions of rare-earth elements
Acknowledgements:This work was carried out with state financial support of the Russian Scientific Fund (Contract No. 14-23-00136).
OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160
References:1. I. H. Ray, Y. Lefevre, S. A. Schulz, N. Vermaulen, and T. E. Krauss, “Scaling of Raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B 84, 035306 (2011).
2. X. C. Liu, M. Myronov, A. Dobbie, R. J. H. Morris, and D. R. Leadley, “High-quality Ge/Si/Ge multiple quantum wells grown by reduced-pressure chemical vapour deposition for photonic applications,” J. Phys. D 44, 055102 (2011).
3. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, “Optical properties of porous-system-based nanocomposites,” Usp. Fiz. Nauk 177, No. 6, 619 (2007) [Phys.–Usp. 50, 595 (2007)].
4. L. V. Grigor’ev, P. P. Konorov, and A. V. Mikhaı˘lov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 54 (2012) [J. Opt. Technol. 79, 99 (2012)].
5. V. Bondarenko, V. Varichenko, and A. Dorofeev, “Integrated optical wave-guide fabricated with porous silicon,” Tech. Phys. Lett. 19, 463 (1993).
6. V. P. Bondarenko, V. A. Yakovtseva, L. N. Dolgiı˘, N. N. Vorozov, N. M. Kazyuchits, L. N. Tsybeskov, and F. Foucher, “Erbium-doped oxidized porous silicon for integrated optical wave-guides,” Pis’ma Zh. Tekh. Fiz. 25, No. 17, 69 (1999) [Tech. Phys. Lett. 25, 705 (1999)].
7. V. P. Bondarenko, A. A. Klyshko, M. Balukani, and F. Ferrari, “Propagation losses in curved integrated optical waveguides based on oxidized porous silicon,” Pis’ma Zh. Tekh. Fiz. 31, No. 6, 17 (2005) [Tech. Phys. Lett. 31, 225 (2005)].
8. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon-based optoelectronics,” Surf. Sci. Rep. 38, Nos. 1–3, 1 (2000).
9. O. Polman, “Erbium-implanted thin-film photonic materials,” Appl. Phys. 82, 1 (1997).
10. S. K. Berashevich, S. K. Lazaruk, and V. E. Borisenko, “Electroluminescence in porous silicon at a reverse bias voltage applied to the Schottky barrier,” Fiz. Tekh. Poluprovodn. 40, 240 (2006) [Semiconductors 40, 234 (2006)].
11. A. G. Gullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” Appl. Phys. 82, 909 (1997).
12. E. I. Terukov, A. N. Kuznetsov, E. O. Prashin, G. Weiser, and H. Kuehne, “Photoluminescence of erbium in amorphous hydrogenated silicon doped with phosphorous,” Fiz. Tekh. Poluprovodn. 31, 869 (1997) [Semiconductors 31, 738 (1997)].