УДК: 621.391.156, 535.8
Optical Fourier processor with a liquid-crystal information-input device
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кузьмин М.С., Рогов С.А. Оптический Фурье-процесор с жидкокристаллическим устройством ввода информации // Оптический журнал. 2015. Т. 82. № 3. С. 23–29.
Kuzmin M.S., Rogov S.A. Optical Fourier processor with a liquid-crystal information-input device [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 3. P. 23–29.
M. S. Kuz’min and S. A. Rogov, "Optical Fourier processor with a liquid-crystal information-input device," Journal of Optical Technology. 82(3), 147-152 (2015). https://doi.org/10.1364/JOT.82.000147
A working prototype of an optical system has been developed for processing signals and images, using a liquid-crystal array with electronic control to input the information. A number of information-processing setups have been investigated that are implemented on the basis of the developed prototype. These include an analyzer of the spatial spectra of the images and signals, a joint-transform correlator, a spectrum analyzer, and a correlator of long signals with a convoluted spectrum. There are 1024×768 elements in the input array, and the information-renewal frequency is 70 frames per second. The prototype thus developed is used as the basis for creating a laboratory project for physically modelling and studying the operation of optical information-processing systems.
optical image processing, pattern recognition, spatial light modulator, liquid-crystal matrix, optical spectrum analyzer, joint-transform correlator, folded spectrum
OCIS codes: 070.0070, 070.6120, 070.4790, 100.4550, 070.4550
References:1. I. A. Mukhin, “Modern flat-panel display devices,” Televid. Radioveshch. No. 1 (37), 43 (2004).
2. B. Javidi, A. Gregory, and J. L. Horner, “Single modulator joint transform correlator architectures,” Appl. Opt. 28, 411 (1989).
3. G. Lu, Z. Zhang, and F. T. S. Yu, “Phase-encoded input joint transform correlator with improved pattern discriminability,” Opt. Lett. 2, 1307 (1995).
4. M. S. Kuzmin and S. A. Rogov, “Spatial light modulator based on liquid-crystal video projector matrix for information processing systems,” Opt. Mem. Neural Networks 22, 261 (2013).
5. G. Stark and R. O’Toole, “Static methods of recognizing patterns using attributes distinguished from the optical Fourier spectra,” in Application of Optical Fourier Transforms, G. Stark, ed. (Academic Press, New York, 1982; Radio i Svyaz’, Moscow, 1988).
6. Ch. Kuk and M. Bernfeld, Radar Signals (Sovetskoe Radio, Moscow, 1971).
7. L. Lambert, M. Arm, and A. Aı˘ımet, “Electrooptic signal processing in phased-antenna arrays,” Zarubezh. Radioélek. No. 8, 3 (1968).
8. C. E. Thomas, “Optical spectrum analysis of large space bandwidth signals,” Appl. Opt. 5, 1782 (1966).
9. M. S. Kuz’min and S. A. Rogov, “A folded-spectrum analyzer with a liquid-crystal input device,” Pis’ma Zh. Tekh. Fiz. 40, No. 15, 1 (2014) [Tech. Phys. Lett. 40, 629 (2014)].
10. M. S. Kuz’min and S. A. Rogov, “Processing 1D signals with raster input in 2D optical correlators,” Zh. Tekh. Fiz. 85, 156 (2015) [Tech. Phys. 60, 631 (2015)].
11. D. Casasent, “Optical signal processing,” in Optical Data Processing: Applications, D. Casasent, ed. (Springer-Verlag, Berlin, 1978; Mir, Moscow, 1980).