ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.3

Using Raman spectroscopy to estimate the demineralization of bone transplants during preparation

For Russian citation (Opticheskii Zhurnal):

Тимченко Е.В., Тимченко П.Е., Волова Л.Т., Милякова М.Н., Максименко Н.А., Таскина Л.А. Применение метода спектроскопии комбинационного рассеяния для оценки деминерализации костных трансплантатов при их подготовке // Оптический журнал. 2015. Т. 82. № 3. С. 30–36.

 

Timchenko E.V., Timchenko P.E., Volova L.T., Milyakova M.N., Maksimenko N.A., Taskina L.A. Using Raman spectroscopy to estimate the demineralization of bone transplants during preparation [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 3. P. 30–36.

For citation (Journal of Optical Technology):

E. V. Timchenko, P. E. Timchenko, L. A. Taskina, L. T. Volova, M. N. Miljakova, and N. A. Maksimenko, "Using Raman spectroscopy to estimate the demineralization of bone transplants during preparation," Journal of Optical Technology. 82(3), 153-157 (2015). https://doi.org/10.1364/JOT.82.000153

Abstract:

This paper presents the results of experimental studies of samples of human cortical and spongy bone tissue by means of Raman scattering as a function of the degree of demineralization. Raman spectra are obtained for samples of human cortical and spongy bone tissue as a function of the degree of demineralization. The dependence of the intensity ratio on the demineralization time, which characterizes the degree of demineralization, is studied for the Raman peaks at 950–962 (PO4)3− and 1665 cm−1 (amide I).

Keywords:

spectroscopy, Raman scattering, scanning electron microscopy, bone tissue, transplant, demineralization

OCIS codes: 170.5660, 000.1430, 180.5810

References:

1. C. E. Misch and F. Dietsh, “Bone-grafting materials in implant dentistry,” Implant Dent. 2, No. 3, 158 (1993).
2. J.-W. Hur, S.-J. Yoon, and S.-Y. Ryu, “Comparison of the bone-healing capacity of autogenous bone, demineralized freeze-dried bone allograft, and collagen sponge in repairing rabbit cranial defects,” J. Korean Assoc. Oral Maxillofac. Surg. 38, 221 (2012).
3. I. A. Kirilova, “Demineralized-bone transplant as a stimulator of osteogenesis: Modern concepts,” Khir. Pozvonoch. No. 3, 105 (2004).
4. P. E. Timchenko, V. P. Zakharov, L. T. Volova, V. V. Boltovskaya, and E. V. Timchenko, “Microscopic monitoring of the osteointegration process of implants,” Komp. Opt. 35, 183 (2011).
5. S. Gilbert, Developmental Biology (Mir, Moscow, 1993).
6. P. A. West, P. A. Torzilli, C. Chen, P. Lin, and N. P. Camacho, “Fourier-transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation,” J. Biomed. Opt. 10, 014011 (2005).
7. C. Otto, C. J. deGrauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of micro-Raman imaging in biomedical research,” J. Raman Spectrosc. 28, 143 (1997).
8. I. E. El’piner, Ultrasound Biophysics (Nauka, Moscow, 1973).
9. J. Zhao, H. Lui, D. I. Mclean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Soc. Appl. Spectrosc. 61, 1225 (2007).
10. V. P. Zakharov, K. V. Larin, S. V. Kozlov, A. A. Moryatov, I. A. Bratchenko, O. O. Myakinin, D. N. Artem’ev, and Yu. A. Khristoforova, “Diagnosis of the regeneration of bone by Raman scattering,” Fiz. Volnov. Prots. Radiotekh. Sis. 16, No. 3, 73 (2013).
11. D. V. Kiseleva, “Application of Raman microspectroscopy for the study of the structural features of biogenic apatite,” Tr. Ezhegodnik IGG UrO RAN No. 157, 332 (2010).
12. M. D. Morris and W. F. Finney, “Recent developments in Raman and infrared spectroscopy and imaging of bone tissue,” IOS Press-Spectrosc. 18, 155 (2004).
13. D. Z. Galimullin, M. E. Sibgatullin, A. Yu. Vorobev, D. I. Kamalova, S. S. Kharintsev, and M. Kh. Salakhov, “Spectral line-shape identification with continuous wavelet transform,” Proc. SPIE 6181, 181 (2006).
14. U. Wehrmeister, D. E. Jacob, A. L. Soldati, N. Loges, T. Hager, and W. J. Hofmeister, “Amorphous, nanocrystalline and crystalline calcium carbonates in biomaterials,” Raman Spectrosc. 42, 926 (2011).
15. M. M. Tlili, M. Ben Amor, C. Gabrielli, S. Joiret, G. Maurin, and P. Rousseau, “Characterization of CaCO3 hydrates by micro-Raman spectroscopy,” J. Raman Spectrosc. 33, 10 (2001).
16. G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” J. Bone 36, 893 (2005).