ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.372.821.3, 621.383, 621.391.822

Investigation of speckle structures formed by the optical vortices of fiber lightguides

For Russian citation (Opticheskii Zhurnal):

Кизеветтер Д.В., Ильин Н.В., Малюгин В.И., Чангсен Сан Исследование спекл-структур, сформированных оптическими вихрями волоконных световодов // Оптический журнал. 2015. Т. 82. № 3. С. 60–64.

 

Kiesewetter D.V., Iliin N.V., Malyugin V.I., Changsen Sun Investigation of speckle structures formed by the optical vortices of fiber lightguides [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 3. P. 60–64.    

For citation (Journal of Optical Technology):

D. V. Kizevetter, N. V. Iljin, V. I. Malyugin, and Changsen Sun, "Investigation of speckle structures formed by the optical vortices of fiber lightguides," Journal of Optical Technology. 82(3), 174-177 (2015). https://doi.org/10.1364/JOT.82.000174

Abstract:

This paper discusses the speckle structures of the radiation of multimode fiber lightguides in the presence of optical vortices. It is shown that the interference pattern of the radiation of optical vortices with an identical direction of rotation creates a speckle structure whose speckles rotate as the plane of observation is displaced close to the surface of the output end. The effect of various factors on the spatial characteristics of the speckle structures is considered.

Keywords:

fiber lightguide, optical vortice, speckle structure

OCIS codes: 060.2310, 120.6150

References:

1. D. V. Kizevetter, “Numerical simulation of a speckle pattern formed by radiation of optical vortices in a multimode optical fibre,” Kvant. Elektron. (Moscow) 38, 172 (2008). [Quantum Electron. 38, 172 (2008)].
2. N. V. Il’in and D. V. Kizevetter, “Method of exciting optical vortices in gradient fiber lightguides,” Nauch.-Tekhnich. Vedom. SPbGPU No. 2 (98), 96 (2010).

3. D. V. Kizevetter, “How defects of the end surfaces of a lightguide affect the mode-interference parameters when optical vortices are present,” Opt. Zh. 80, No. 1, 10 (2013). [J. Opt. Technol. 80, 7 (2013)]
4. N. V. Il’in and D. V. Kizevetter, “Numerical simulation of a speckle pattern formed by radiation of optical vortices in a multimode optical fibre,” Nauch.-Tekhnich. Vedom. SPbGPU No. 1 (165), 108 (2013).
5. D. V. Kizevetter and N. V. Iljin, “Light-intensity distribution close to the output end of a fiber lightguide in the presence of optical vortices,” Nauch.-Tekhnich. Vedom. SPbGPU No. 3 (177), 151 (2013).
6. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).
7. H. G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, 1977; Mir, Moscow, 1980).
8. V. A. Privezentsev, I. I. Grodnev, S. D. Kholodnyı˘, and I. B. Ryazanov, Principles of Cable Engineering (Énergiya, Moscow, 1975).
9. K. N. Alekseev and M. A. Yavorskiı˘, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spektrosk. 98, 59 (2005) [Opt. Spectrosc. 98, 53 (2005)].