УДК: 621.372.821.3, 621.383, 621.391.822
Investigation of speckle structures formed by the optical vortices of fiber lightguides
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кизеветтер Д.В., Ильин Н.В., Малюгин В.И., Чангсен Сан Исследование спекл-структур, сформированных оптическими вихрями волоконных световодов // Оптический журнал. 2015. Т. 82. № 3. С. 60–64.
Kiesewetter D.V., Iliin N.V., Malyugin V.I., Changsen Sun Investigation of speckle structures formed by the optical vortices of fiber lightguides [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 3. P. 60–64.
D. V. Kizevetter, N. V. Iljin, V. I. Malyugin, and Changsen Sun, "Investigation of speckle structures formed by the optical vortices of fiber lightguides," Journal of Optical Technology. 82(3), 174-177 (2015). https://doi.org/10.1364/JOT.82.000174
This paper discusses the speckle structures of the radiation of multimode fiber lightguides in the presence of optical vortices. It is shown that the interference pattern of the radiation of optical vortices with an identical direction of rotation creates a speckle structure whose speckles rotate as the plane of observation is displaced close to the surface of the output end. The effect of various factors on the spatial characteristics of the speckle structures is considered.
fiber lightguide, optical vortice, speckle structure
OCIS codes: 060.2310, 120.6150
References:1. D. V. Kizevetter, “Numerical simulation of a speckle pattern formed by radiation of optical vortices in a multimode optical fibre,” Kvant. Elektron. (Moscow) 38, 172 (2008). [Quantum Electron. 38, 172 (2008)].
2. N. V. Il’in and D. V. Kizevetter, “Method of exciting optical vortices in gradient fiber lightguides,” Nauch.-Tekhnich. Vedom. SPbGPU No. 2 (98), 96 (2010).
3. D. V. Kizevetter, “How defects of the end surfaces of a lightguide affect the mode-interference parameters when optical vortices are present,” Opt. Zh. 80, No. 1, 10 (2013). [J. Opt. Technol. 80, 7 (2013)]
4. N. V. Il’in and D. V. Kizevetter, “Numerical simulation of a speckle pattern formed by radiation of optical vortices in a multimode optical fibre,” Nauch.-Tekhnich. Vedom. SPbGPU No. 1 (165), 108 (2013).
5. D. V. Kizevetter and N. V. Iljin, “Light-intensity distribution close to the output end of a fiber lightguide in the presence of optical vortices,” Nauch.-Tekhnich. Vedom. SPbGPU No. 3 (177), 151 (2013).
6. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).
7. H. G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, 1977; Mir, Moscow, 1980).
8. V. A. Privezentsev, I. I. Grodnev, S. D. Kholodnyı˘, and I. B. Ryazanov, Principles of Cable Engineering (Énergiya, Moscow, 1975).
9. K. N. Alekseev and M. A. Yavorskiı˘, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spektrosk. 98, 59 (2005) [Opt. Spectrosc. 98, 53 (2005)].