УДК: 535.373.3
Spectroscopy of quasi-atomic nanostructures
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Покутний С.И. Спектроскопия квазиатомных наноструктур // Оптический журнал. 2015. Т. 82. № 5. С. 19–26.
Pokutniy S.I. Spectroscopy of quasi-atomic nanostructures [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 5. P. 19–26.
S. I. Pokutniĭ, "Spectroscopy of quasi-atomic nanostructures," Journal of Optical Technology. 82(5), 280-285 (2015). https://doi.org/10.1364/JOT.82.000280
A theory is developed for a superatom composed of a spatially separated electron and hole. The electron in this case is localized above a spherical interface. The hole moves in the volume of a semiconductor quantum dot (a quantum-dot–dielectric matrix). An effect is detected consisting of a substantial increase (by a factor of 4.1–72.6) of the binding energy of a superatom containing a cadmium sulfide quantum dot by comparison with the binding energy of an exciton in single-crystal CdS. The possibility is discussed of experimentally studying superatoms and their role in various regions of physical phenomena.
superatom, quasi-zero-dimensional nanosystems, quantum dots, spatially separated electron and hole
OCIS codes: 160.2540, 160.4236, 250.5230
References:1. E. A. Andryushin and A. A. Bykov, “From superlattices to superatoms,” Usp. Fiz. Nauk 154, No. 1, 123 (1988) [Sov. Phys. Usp. 31, 68 (1988)].
2. V. Ya. Grabovskis, Ya. Ya. Dzenis, and A. I. Ekimov, “Photoionization of semiconductor microcrystals in glass,” Fiz. Tverd. Tela (Leningrad) 31, No. 1, 272 (1989) [Sov. Phys. Solid State 31, 149 (1989)].
3. N. V. Bondar’ and M. S. Brodin, “Contributions of the interior and surface states of charge carriers to the emission spectra of CdS quantum dots in borosilicate glasses,” Fiz. Tekh. Poluprovodn. 40, 948 (2006) [Semiconductors 40, 934 (2006)].
4. Yu. N. Kul’chin, V. P. Dzyuba, and A. V. Shcherbakov, “Optical transmittance spectra of insulator nanoparticles in bulk heterocomposites,” Fiz. Tekh. Poluprovodn. 43, 349 (2009) [Semiconductors 43, 331 (2009)].
5. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, A. N. Latyshev, T. S. Shatskikh, E. E. Bordyuzha, and S. A. Soldatenko, “Spectral properties of CdS quantum dots dispersed in gelatin,” Teoret. Eksp. Khim. 48, No. 1, 43 (2012).
6. S. I. Pokutnyi, “Optical nanolaser on the heavy hole transition in semiconductor nanocrystals: theory,” Phys. Lett. A 342, 347 (2005).
7. S. I. Pokutniı˘, “Exciton states in semiconductor quantum dots in the modified effective-mass approximation,” Fiz. Tekh. Poluprovodn. 41, 1341 (2007) [Semiconductors 41, 1323 (2007)].
8. S. I. Pokutniı˘, “Biexcitons formed from spatially separated electrons and holes in quasi-zero-dimensional semiconductor nanosystems,” Fiz. Tekh. Poluprovodn. 47, 1653 (2013) [Semiconductors 47, 1626 (2013)].
9. S. I. Pokutnyi, “Optical absorption at one-particle states of charge carriers in semiconductor quantum dots,” Optics 2, No. 4, 47 (2013).
10. Yu. E. Lozovik and V. N. Nishanov, “Spectrum of Wannier–Mott excitons close to the boundary of two media,” Fiz. Tverd. Tela (Leningrad) 18, 3267 (1976) [Sov. Phys. Solid State 18, 1905 (1976)].
11. L. V. Keldysh, “Coulomb interaction in thin films of semiconductors and metals,” Pis’ma Zh. Eksp. Teor. Fiz. 29, 716 (1979) [JETP Lett. 29, 658 (1979)].