Tunable and ultraflat optical frequency comb generator based on cascaded intensity modulators
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Bo Li, Guibin Lin, FuPing Wu, Lei Shang Tunable and ultraflat optical frequency comb generator based on cascaded intensity modulators [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 6. С. 25–30.
Bo Li, Guibin Lin, FuPing Wu, Lei Shang Tunable and ultraflat optical frequency comb generator based on cascaded intensity modulators [in English] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 25–30.
Bo Li, Guibin Lin, Lei Shang, and FuPing Wu, "Tunable and ultraflat optical frequency comb generator based on cascaded intensity modulators," Journal of Optical Technology. 82(6), 348-352 (2015). https://doi.org/10.1364/JOT.82.000348
An optical frequency comb generator based on two-cascade intensity modulators is proposed and experimentally demonstrated. By carefully adjusting direct current biases and drive amplitudes of radio frequency signals of the two intensity modulators, the combs consisting of 3, 5, 9, 15, or 25 lines with the relative amplitude flatness within 1 dB can be generated. The scheme is relatively simple and adjustable, where the frequency spacing varies with microwave frequency applied on modulators.
optical frequency comb, intensity modulator, optical communications
Acknowledgements:This work was supported by the National Basic Research Program of China (973 Program: 2010CB328300), 111 project (under grant: B08038), the Fundamental Research Funds for the Central Universities (K5051301010), the National Natural Science Foundation of China (under grant: 61072070, 61301179), and the Specialized Research Fund for the Doctoral Program of Higher Education (under grant: 20110203110011).
OCIS codes: 140.0140, 060.4510, 060.4080
References:1. Morioka T., Mori K., Saruwatari M. More than 100-Wavelength-Channel Picosecond Optical Pulse Generation from Single Laser Source Using Supercontinuum in Optical Fibres // Electron. Lett. 1993. V. 29. № 10. P. 862–864.
2. Okamoto K., Kominato T., Yamada H., Goh T. Fabrication of Frequency Spectrum Synthesizer Consisting of Arrayed-Waveguide Grating Pair and Thermo-Optic Amplitude and Phase Controllers // Electron. Lett. 1999. V. 35. № 9. P. 733–734.
3. Bennett S., Cai B., Burr E., Gough O., Seeds A.J. 1.8-THz Bandwidth, Zero-Frequency Error, Tunable Optical Comb Generator for DWDM Applications // IEEE Photon. Technol. Lett. 1999. V. 11. № 5. P. 551–553.
4. Fontaine N.K., Geisler D.J., Scott R.P., He T., Heritage J.P., Yoo S.J.B. Demonstration of High-Fidelity Dynamic Optical Arbitrary Waveform Generation // Opt. Exp. 2010. V. 18. № 22. P. 22988–22995.
5. Jiang Z., Huang C.-B., Leaird D., Weiner A.M. Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines // Nature Photon. 2007. V. 1. № 8. P. 463–467.
6. Jiang Z., Leaird D.E., Weiner A.M. Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator // IEEE Journ. Quant. Electron. 2007. V. 43. № 12. P. 1163–1174.
7. Fujiwara M., Kani J., Suzuki H., Araya K., Teshima M. Flattened Optical Multicarrier Generation of 12.5 GHz Spaced 256 Channels Based on Sinusoidal Amplitude and Phase Hybrid Modulation // Electron. Lett. 2001. V. 37. № 15. P. 967–968.
8. Wu R., Supradeepa V.R., Long C.M., Leaird D.E., Weiner A.M. Generation of Very Flat Optical Frequency Combs from Continuous-Wave Lasers Using Cascaded Intensity and Phase Modulators Driven by Tailored Radio Frequency Waveforms // Opt. Lett. 2010. V. 35. № 19. P. 3234–3236.
9. Dou Y., Zhang H., Yao M. Improvement of Flatness of Optical Frequency Comb Based on Nonlinear Effect of Intensity Modulator // Opt. Lett. 2011. V. 36. № 14. P. 2749–2751.
10. Dou Y., Zhang H., Yao M. Generation of Flat Optical-Frequency Comb Using Cascaded Intensity and Phase Modulators // IEEE Photon. Technol. Lett. 2012. V. 24. № 9. P. 727–729.
11. He C., Pan S., Guo R., Zhao Y., Pan M. Ultraflat Optical Frequency Comb Generated Based on Cascaded Polarization Modulators // Opt. Lett. 2012. V. 37. № 18. P. 3834–3836.