ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.391

Model of the quasi-optimal hierarchical segmentation of a color image

For Russian citation (Opticheskii Zhurnal):

Харинов М.В. Модель квазиоптимальной иерархической сегментации цветового изображения // Оптический журнал. 2015. Т. 82. № 7. С. 37–43.

 

Kharinov M.V. Model of the quasi-optimal hierarchical segmentation of a color image [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 7. P. 37–43.

For citation (Journal of Optical Technology):

M. V. Kharinov, "Model of the quasi-optimal hierarchical segmentation of a color image," Journal of Optical Technology. 82(7), 425-429 (2015). https://doi.org/10.1364/JOT.82.000425

Abstract:

This paper discusses the solution of the problem of segmenting a digital image by means of a hierarchical sequence of piecewise-constant approximations that minimally differ from the image in the rms deviation. Analytical justification is given for the computations at the stage of preliminary automatic processing of the image without using controlling parameters. An algorithm is presented for combined segmentation/quality-improvement/clusterization and is illustrated by examples.

Keywords:

clusterization of pixels, image segmentation, Ward method, Mumford–Shah model, piecewise-constant approximations, total quadratic error, minimization, hierarchical sequence

OCIS codes: 150.0150, 100.2000

References:

1. I. Gurevich, Yu. Trusova, and V. Yashina, “The challenges, the problems and the tasks of the descriptive approach to image,” in Proceedings of the Eleventh International Conference on Pattern Recognition and Image Analysis: New Information Technologies (PRIA–11–2013), Sept. 23–28, 2013, vol. 1, pp. 30–35.
2. Yu. V. Vizil’ter and S. Yu. Zheltov, “Problems of artificial vision in modern aviation systems,” Mekhan. Uprav. Inform. No. 3, 11 (2011).
3. S. V. Ablameı˘ko, A. M. Nedz’ved’, A. M. Belotserkovskiı˘, and E. A. Rutskaya, “Segmentation of three-dimensional computer-tomography images based on global–local information,” Vest. Beloruss. Gos. Univ. No. 1, 58 (2009).
4. P. A. Mel’nikov and A. V. Kopylov, “Algorithm for searching for the quasi-optimal marking scheme for processing images with linewise combination of variables,” Izv. Tul’sk. Gos. Univ. Estest. Nauki No. 1, 119 (2012).
5. M. V. Kharinov, Memorizing and Adaptive Information Processing of Digital Images, R. M. Yusupov, ed. (SPbGU, St. Petersburg, 2006).
6. M. V. Kharinov, “Generalization of three approaches to the optimum segmentation of a digital image,” Trudy SPIIRAN No. 2, 294 (2013).
7. S. D. Dvoenko, “Meanless k-means as k-meanless clustering with the bi-partial approach,” in Proceedings of the Twelfth International Conference on Pattern Recognition and Information Processing (PRIP’2014), Minsk, 2014, pp. 50–54.
8. S. D. Dvoenko, “Clustering of a set of objects,” in Proceedings of the Ninth International Conference on Pattern Recognition and Information Processing (PRIP’2007), Minsk, 2007, pp. 93–97.
9. S. D. Dvoenko, “Nonhierarchical divisive clusterization algorithm,” Avtomat. Telemekh. No. 4, 117 (1999).
10. A. C. Bugaev and A. V. Khel’vas, “Exploratory research and development of methods and facilities of analysis and automatic recognition of flow information in global information systems. LATSKAN code,” in Response to Research (MFTI, Moscow, 2001), vol. 1.
11. D. Mumford and J. Shah, “Boundary detection by minimizing functionals, I,” Proceedings of the IEEE Computer Vision Pattern Recognition Conference, San Francisco, 1985, pp. 22–26.
12. N. J. Redding, D. J. Crisp, D. H. Tang, and G. N. Newsam, “An efficient algorithm for Mumford–Shah segmentation and its application to SAR imagery,” in Proceedings of the Conference on Digital Image Computing Techniques and Applications (DICTA’99), 1999, pp. 35–41.
13. G. Koepfler, C. Lopez, and J. Morel, “A multiscale algorithm for image segmentation by variational method,” SIAM J. Numer. Anal. 31, No. 1, 282 (1994).
14. J. H. Ward, Jr., “Hierarchical grouping to optimize an objective function,” J. Am. Stat. Assoc. 58, 236 (1963).
15. A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recogn. Lett. 31, 651 (2010).
16. M. V. Kharinov, “Image segmentation using optimal and hierarchical piece-wise-constant approximations,” Pattern Recogn. Image Anal. 24, 409 (2014).
17. M. V. Kharinov, “Adaptive dichotomous image segmentation toolkit,” Pattern Recogn. Image Anal. 22, 228 (2012).