УДК: 535.372, 615.471, 519.245
How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дрёмин В.В., Дунаев А.В. Влияние содержания меланина в коже на формирование сигнала флуоресцентной спектроскопии // Оптический журнал. 2016. Т. 83. № 1. С. 57–64.
Dryomin V.V., Dunaev A.V. How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 1. P. 57–64.
V. V. Dremin and A. V. Dunaev, "How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation," Journal of Optical Technology. 83(1), 43-48 (2016). https://doi.org/10.1364/JOT.83.000043
The influence of various melanin concentrations on the endogenous fluorescence intensity of biological tissue has been experimentally studied, and the fluorescence signals have been modeled by the Monte Carlo method. The modeling is based on a four-layer optical model of the skin, using known optical parameters of skin with various melanin concentrations. The fluorescence spectra obtained by the Monte Carlo method agrees with the results of the experimental investigations.
optical noninvasive diagnostics, fluorescent spectroscopy, melanin, Monte Carlo method, medical and technical requirements
Acknowledgements:This work was carried out as a basic part of a state program of the RF Ministry of Education and Science for the Federal State Budgetary Educational Institute of Higher Professional Education State University—Academic–Scientific Manufacturing Complex (No. 310).
OCIS codes: 170.6280, 170.6510
References:1. V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics (SPIE, Bellingham, Wash., 2002; Fizmatlit, Moscow, 2007), vol. 1.
2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1983; Mir, Moscow, 1986).
3. N. Akbar, S. G. Sokolovski, A. V. Dunaev, J. J. Belch, E. U. Rafailov, and F. Khan, “In vivo noninvasive measurement of skin autofluorescence biomarkers relate to cardiovascular disease in mice,” J. Microsc. 255(1), 42–48 (2014).
4. O. D. Smirnova, D. A. Rogatkin, and K. S. Litvinova, “Collagen as in vivo quantitative fluorescent biomarkers of abnormal tissue changes,” J. Innovative Opt. Health Sci. 5(2), 1250010 (2012).
5. D. A. Rogatkin and O. D. Smirnova, “Mathematical modelling of signals recorded in noninvasive medical laser fluorescence diagnosis,” J. Opt. Technol. 80(9), 566–570 (2013) [Opt. Zh. 80(9), 54–60 (2013)].
6. A. V. Dunaev, E. A. Zherebtsov, D. A. Rogatkin, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Substantiation of medical and technical requirements for non-invasive spectrophotometric diagnostic devices,” J. Biomed. Opt. 18(10), 107009 (2013).
7. A. V. Dunaev, V. V. Dremin, E. A. Zherebtsov, I. E. Rafailov, K. S. Litvinova, S. G. Palmer, N. A. Stewart, S. G. Sokolovski, and E. U. Rafailov, “Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow,” Med. Eng. Phys. 37(6), 574–583 (2015).
8. V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics (SPIE Press, Bellingham, Wash., 2002; Fizmatlit, Moscow, 2007).
9. N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin in vivo,” J. Invest. Dermatol. 85(1), 38–42 (1985).
10. G. I. Petrov, A. Doronin, H. T. Whelan, I. V. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3(9), 2154–2161 (2012).
11. I. Hamzavi, N. Shiff, M. Martinka, Z. Huang, D. I. McLean, H. Zeng, and H. Lui, “Spectroscopic assessment of dermal melanin using blue vitiligo as an in vivo model,” Photodermatol. Photoimmunol. Photomed. 22(1), 46–51 (2006).
12. R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements—the effect of melanin contents and localization,” J. Photochem. Photobiol. B 86(3), 219 (2007).
13. D. A. Rogatkin, S. G. Sokolovski, K. A. Fedorova, V. V. Sidorov, N. A. Stewart, and E. U. Rafailov, “Basic principles of design and functioning of multifunctional laser diagnostic system for non-invasive medical spectrophotometry,” Proc. SPIE 7890, 78901H (2011).
14. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
15. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation–reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
16. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” J. Photochem. Photobiol. 68(5), 603–632 (1998).
17. R. Richards-Kortum, R. P. Rava, J. Baraga, M. Fitzmaurice, J. Kramer, and M. Feld, Optronic Techniques in Diagnostic and Therapeutic Medicine (Plenum, New York, 1990), pp. 129–138.
18. D. A. Rogatkin, “Physical principles of laser clinical fluorescence spectroscopy in vivo. Lecture,” Medits. Fiz. (4), 78–96. (2014).
19. S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” Adv. Opt. Imaging Photon Migr. 2, 364–369 (1996).
20. D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D 36(14), 1722–1728 (2003).
21. S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” Opt.-Therm. Response Laser-Irradiat. Tissue 12, 73–100 (1995).
22. J. L. Silveira, F. L. Silveira, B. Bodanese, R. A. Zângaro, and M. T. T. Pacheco, “Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemical,” J. Biomed. Opt. 17(7), 077003 (2012).
23. A. V. Dunaev, V. V. Dremin, E. A. Zherebtsov, S. G. Palmer, S. G. Sokolovski, and É. U. Rafailov, “Analysis of individual variability of the parameters in laser fluorescence diagnosis,” Biotekhnosfera 26(2), 39–47 (2013).
24. R. R. Anderson, “In vivo fluorescence of human skin [letter, comment],” Arch. Dermatol. 125, 999–1000 (1989).