ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535

Extreme increase in atomic transition probability of the Cs D2 line in strong magnetic fields under selective reflection

For Russian citation (Opticheskii Zhurnal):

Саргсян А.Д., Амирян А.О., Леруа К., Вартанян Т.А., Петров П.А., Саркисян Д.А. Гигантское возрастание вероятностей атомных переходов D2 линии Cs в сильных магнитных полях при селективном отражении // Оптический журнал. 2016. Т. 83. № 11. С. 11–16.

 

Sargsyan A.D., Amiryan A.O., Leroy K., Vartanyan T.A., Petrov P.A., Sarkisyan D.A. Extreme increase in atomic transition probability of the Cs D2 line in strong magnetic fields under selective reflection [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 11–16.

For citation (Journal of Optical Technology):

A. D. Sargsyan, A. O. Amiryan, C. Leroy, T. A. Vartanyan, P. A. Petrov, and D. A. Sarkisyan, "Extreme increase in atomic transition probability of the Cs D2 line in strong magnetic fields under selective reflection," Journal of Optical Technology. 83(11), 654-658 (2016). https://doi.org/10.1364/JOT.83.000654

Abstract:

Selective reflection of 852-nm laser radiation from the interface between cesium vapor and the sapphire window of a 30-micrometer-thick microcell was used to record an extreme increase in the probability of the Fg=3→Fe=5 transitions associated with the Cs-atom D2 lines in magnetic fields with inductions ranging from 300 to 3200 Gauss. We showed that a group of seven transitions Fg=3, mF=−3, −2, −1, 0, +1, +2, +3→Fe=5, mF=−2, −1, 0, +1, +2, +3, +4 was formed in accordance with the selection rules ΔmF=+1 for σ+-circularly-polarized radiation. These seven transitions have much higher probabilities in 500–1000 Gauss magnetic fields, with three of the transitions having probabilities higher than all of the other transitions originating from the level Fg=3. In magnetic fields with induction greater than 3000 Gauss, this group of seven transitions at the high-frequency end of the spectrum is completely separate from the group of transitions with Fg=3→Fe=4. Comparison of the frequencies and probabilities of these seven atomic transitions with those for the transitions Fg=3→Fe=5 showed good agreement between theory and experiment. We also discuss potential practical applications for these transitions.

Keywords:

selective reflection, magnetic field, microcell, forbidden transitions, cesium atoms

Acknowledgements:

The research was supported by the Republic of Armenia Ministry of Education and Science (15T-1S040, 15 RF-024); Russian Foundation for Basic Research (RFBR) (15-52-05030); IRMAS International Laboratory Association.
The authors thank A. S. Sarkisyan for fabrication of the microcells and A. Papoyan and G. Akhumyan for useful discussions. T. A. Vartanyan is Principal Investigator for Government Task Order 2014/190.

OCIS codes: 020.0020, 300.6210

References:

1. D. Budker, W. Gawlik, D. Kimball, S. R. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
2. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light–Atom Interactions (Oxford University Press, 2010).
3. M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1 GHz,” Opt. Lett. 40, 2000–2003 (2015).
4. A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, A. Stabrawa, and W. Gawlik, “Saturated-absorption spectroscopy revisited: atomic transitions in strong magnetic fields (>20 mT) with a micrometer-thin cell,” Opt. Lett. 39, 2270–2273 (2014).
5. E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference of Atomic States (Springer-Verlag, Berlin, 1993; Nauka, Moscow, 1991).
6. G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of ‘forbidden’ atomic transitions on D2 line using Rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66, 119–125 (2012).
7. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine Paschen-Back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046–1053 (2014).

8. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2004).
9. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
10. A. Sargsyan, G. Hakhumyan, R. Mirzoyan, and D. Sarkisyan, “Investigation of atomic transitions of cesium in strong magnetic fields by an optical half-wavelength cell,” JETP Lett. 98(8), 441–445 (2013) [Pis’ma v Zh. Éksp. Teor. Fiz. 98(8), 499–503 (2013)].
11. J. Woerdman and M. Schuurmans, “Spectral narrowing of selective reflection from sodium vapour,” Opt. Commun. 14, 248–251 (1975).
12. T. A. Vartanyan, “Resonant reflection of intense optical radiation from a low-density gaseous medium,” Sov. Phys. JETP 88, 674–677 (1985) [Zh. Éksp. Teor. Fiz. 88, 1147–1152 (1985)].
13. G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A 38, 5197–5205 (1988).
14. V. Vuletić, V. Sautenkov, C. Zimmermann, and T. Hänsch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993).
15. A. Weis, V. Sautenkov, and T. Hänsch, “Observation of ground-state Zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A 45, 7991–7996 (1992).
16. T. Vartanyan and D. Lin, “Enhanced selective reflection from a thin layer of a dilute gaseous medium,” Phys. Rev. A 51, 1959–1964 (1995).
17. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
18. A. V. Papoyan, G. G. Grigoryan, S. V. Shmavonyan, D. Sarkisyan, J. Guéna, M. Lintz, and M.-A. Bouchiat, “New feature in selective reflection with a highly parallel window: phase-tunable homodyne detection of the radiated atomic field,” Eur. Phys. J. D 30, 265–273 (2004).
19. A. Sargsyan, B. Glushko, and D. Sarkisyan, “Micron-thick spectroscopic cells for studying the Paschen–Back regime on the hyperfine structure of cesium atoms,” J. Exp. Theor. Phys. 120(4), 579–586 (2015) [Zh. Éksp. Teor. Fiz. 147(4), 668–677 (2015)].
20. T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, “Fabrication method for microscopic vapor cells for alkali atoms,” Opt. Lett. 35, 1950–1952 (2010).
21. K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargysyan, D. Sarkisyan, B. Gmeiner, V. Sandoghdar, and C. S. Adams, “Interrogation and fabrication of nm scale hot alkali vapour cells,” J. Phys. 635, 122006 (2015).