УДК: 535.14535.015
Absorption of light by free electrons in semiconductors. I. Processes involving longitudinal optical phonons
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Осипова М.О., Перлин Е.Ю. Поглощение света свободными электронами в полупроводниках. I. Процессы с участием продольных оптических фононов // Оптический журнал. 2016. Т. 83. № 11. С. 3–7.
Osipova M.O., Perlin E.Yu. Absorption of light by free electrons in semiconductors. I. Processes involving longitudinal optical phonons [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 3–7.
M. O. Osipova and E. Yu. Perlin, "Absorption of light by free electrons in semiconductors. I. Processes involving longitudinal optical phonons," Journal of Optical Technology. 83(11), 648-651 (2016). https://doi.org/10.1364/JOT.83.000648
We calculated the absorption coefficient of light in intraband transitions involving longitudinal optical phonons in semiconductors for various arbitrary free electron densities. We describe the intraband absorption coefficients as a function of frequency and temperature for a crystal with the band structure and vibration mode parameters typical of A2B6 crystals.
absorption coefficient, intraband optical transitions, longitudinal optical phonons, Frohlich Hamiltonian
Acknowledgements:This work was performed as part of the design component of a government scientific research task order—project nos. 3.1675.2014/K and 3.821.2014/K.
OCIS codes: 190.0190, 320.0320, 160.6000
References:1. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
2. D. Von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
3. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, G. Mourou, C. Spielmann, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
4. T. Apostolova and Y. Hahn, “Modeling of laser-induced breakdown in dielectrics with subpicosecond pulses,” J. Appl. Phys. 88, 1024–1034 (2000).
5. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000).
6. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
7. E. Yu. Perlin, K. A. Eliseev, E. G. Idrisov, and Ya. T. Khalilov, “Nonlinear absorption of femtosecond light pulses accompanying two-photon resonance in bulk crystals and nanostructures,” J. Opt. Technol. 78(9), 563–569 (2011) [Opt. Zh. 78(9), 3–12 (2011)].
8. E. Yu. Perlin, K. A. Eliseev, E. G. Idrisov, and Ya. T. Khalilov, “Nonlinear absorption of femtosecond light pulses under conditions of multiphoton resonances in solids,” Opt. Spectrosc. 112(6), 850–856 (2012) [Opt. Spektrosk. 112(6), 920–927 (2012)].
9. E. G. Idrisov and E. Yu. Perlin, “Nonlinear absorption of light pulses under conditions of two-photon resonance in bulk crystals and nanostructures in the femtosecond pump-probe spectroscopy mode,” Opt. Spectrosc. 115(3), 435–444 (2013) [Opt. Spektrosk. 115(3), 497–507 (2013)].
10. E. Yu. Perlin, K. A. Eliseev, E. G. Idrisov, and Ya. T. Khalilov, “Nonlinear absorption of femtosecond light pulses under multiphoton resonance conditions,” J. Phys.: Conf. Ser. 461, 012002 (2013).
11. M. O. Osipova and E. Yu. Perlin, “Two-photon absorption of quasi-steady-state radiation and supershort light pulses in broad-band semiconductors,” J. Opt. Technol. 83(6), 329–331 (2016) [Opt. Zh. 83(6), 3–6 (2016)].
12. A. I. Ansel’m, Introduction to Semiconductor Theory (Prentice-Hall, Upper Saddle River, NJ, 1982; Nauka, Moscow, 1978).
13. K. Seeger, Semiconductor Physics (Springer-Verlag, Vienna, 1973; Mir, Moscow, 1977).
14. R. J. Glauber, “Quantum theory of optical coherence,” in Quantum Theory of Optical Coherence: Selected Papers and Lectures, R. J. Glauber, ed. (Wiley-VCH, Weinheim, 2007), pp. 463–531.
15. R. J. Glauber, “Optical coherence and photon statistics,” in Quantum Optics and Electronics, Les Houches 1964, C. de Witt, ed. (Gordon and Breach, New York, 1965; Mir, Moscow, 1966).
16. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (W. A. Benjamin, New York/Amsterdam, 1968; Mir, Moscow, 1970), Chaps. 7 and 8.
17. S. G. Kalashnikov and V. L. Bonch-Bruevich, Physics of Semiconductors (Mir, Moscow, 1979; Nauka, Moscow, 1977).
18. I. S. Grigoriev and E. Z. Meı˘likhov, eds., Handbook of Physical Quantities (CRC Press, Boca Raton, 1995; Energoatomizdat, Moscow, 1991).