Unidirectional coupler optimization of surface plasmon polaritons based on the damped least-squares method
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
J. J. Ping, H. X. Ma, Y. W. Liu Unidirectional coupler optimization of surface plasmon polaritons based on the damped least-squares method (Оптимизация однонаправленного соединителя для поверхностных плазмон-поляритонов с использованием метода Левенберга-Марквардта) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 11. С. 58–67.
J. J. Ping, H. X. Ma, Y. W. Liu Unidirectional coupler optimization of surface plasmon polaritons based on the damped least-squares method (Оптимизация однонаправленного соединителя для поверхностных плазмон-поляритонов с использованием метода Левенберга-Марквардта) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 58–67.
J. J. Ping, H. X. Ma, and Y. W. Liu, "Unidirectional coupler optimization of surface plasmon polaritons based on the damped least-squares method," Journal of Optical Technology. 83(11), 692-698 (2016). https://doi.org/10.1364/JOT.83.000692
Controlling the launching efficiency and the directionality of surface plasmon polaritons is a major goal for the development of plasmonic devices. This study presents the use of the damped least-squares method to optimize the geometry parameters of a surface plasmon polariton unidirectional coupler. A damped least-squares algorithm has been constructed and the performance of a surface plasmon polariton unidirectional coupler has been obtained with COMSOL LiveLink for MATLAB. We have optimized a quasi-periodic surface plasmon polariton unidirectional grating coupler, which consists of five groups of sub-wavelength groove-doublets with an extinction ratio of nearly 71 dB. Combination of the COMSOL and the damped least-squares method in a MATLAB environment is a practicable method for the design of a surface plasmon polariton unidirectional coupler. Moreover, the general design principles behind this study can readily be extended to other numeric algorithms and other plasmonic devices.
surface plasmon polaritons, unidirectional coupler, finite element method, damped least-square method
Acknowledgements:This work was supported by “the Fundamental Research Funds for the Central Universities” No. NZ2014106.
OCIS codes: 240.6680, 310.6628
References:1. Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer, 1988. P. 4–39.
2. Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics // Nature. 2003. V. 424. P. 824–830.
3. Luo X.G., Ishihara T. Sub-100-nm photolithography based on plasmon resonance // Japanese J. Appl. Phys. 2004. V. 43. P. 4017–4021.
4. Laux E., Genet C., Skauli T., Ebbesen T.W. Plasmonic photon sorters for spectral and polarimetric imaging // Nat. Photonics. 2008. № 2. P. 161–164.
5. Genet C., Ebbesen T.W. Light in tiny holes // Nature. 2007. V. 445. P. 39–46.
6. Bharadwaj P., Deutsch B., Novotny L. Optical antennas // Advances in Optics and Photonics. 2009. № 1. P. 438–483.
7. Afshinmanesh F., White J.S., Cai W., Brongersma M.L. Measurement of the polarization state of light using an integrated plasmonic polarimeter // Nanophotonics. 2012. № 1. P. 125–129.
8. Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices // Nature Materials. 2010. № 9. P. 205–213.
9. Yin H.Z., Liu Y.M., Yu Z.Y., Shi Q., Gong H., Wu X., Song X. Nonlinear hybrid plasmonic slot waveguide for second-harmonic generation // Chinese Opt. Lett. 2013. № 11. P. 101901-1–101901-5.
10. Roy R.D., Chattopadhyay R., Bhadra S.K. Stratified composite-loaded plasmonic waveguide for sensing biofluids // Photonics Research. 2013. № 1. P. 164–170.
11. Kretschmann E., Raether H. Notizen: Radiative decay of non radiative surface plasmons excited by light // Zeitschrift für Naturforschung A. 1968. B. 23. S. 2135–2136.
12. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection // Zeitschrift für Physik. 1968. № 216. S. 398–410.
13. Kim H., Lee B. Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination // Plasmonics. 2009. № 4. P. 153–159.
14. Li X.W., Tan Q.F., Bai B.F., Jin G.F. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit // Appl. Phys. Lett. 2011. № 98. P. 251109-1–251109-3.
15. Li G.Y., Zhang J.S. Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period // Scientific Reports. 2014. № 4. P. 5914-1–5914-7.
16. Rodríguez-Fortuño F.J., Marino G., Ginzburg P., O’Connor D., Martínez A., Wurtz G.A., Zayats A.V. Near-field interference for the unidirectional excitation of electromagnetic guided modes // Science. 2013. V. 340. P. 328–330.
17. Lee S.Y., Lee I.M., Park J., Oh S., Lee W., Kim K.Y., and Lee B. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons // Phys. Rev. Lett. 2012. V. 108. P. 213907-1–213907-5.
18. Lin J., Mueller J.P.B., Wang Q., Yuan G.h., Antoniou N., Yuan X.C., Capasso F. Polarization-controlled tunable directional coupling of surface plasmon polaritons // Science. 2013. V. 340. P. 331–334.
19. Huang L.L., Chen X.Z., Bai B.F., Tan Q.F., Jin G.F., Zentgraf T., Zhang S. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity // Light: Science & Applic. 2013. № 2. P. e70–e77.
20. Yang J., Zhou S.X., Hu C., Zhang W.W., Xiao X., Zhang J.S. Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas // Laser & Photonics Rev. 2014. № 8. P. 590–595.
21. Bonod N., Popov E., Li L.F., Chernov B. Unidirectional excitation of surface plasmons by slanted gratings // Opt. Exp. 2007. V. 15. P. 11427–11432.
22. Yang J., Xiao X., Hu C., Zhang W.W., Zhou S.X., Zhang J.S. Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair // Nano Lett. 2014. V. 14. P. 704–709.
23. Gong Y.K., Liu X.M., Wang L.R., Zhang Y.N. Unidirectional manipulation of surface plasmon polariton by dualnanocavity in a T-shaped waveguide // Opt. Commun. 2011. V. 284. P. 795–798.
24. Liao H.M., Li Z., Chen J.J., Zhang X., Yue S., Gong Q.H. A submicron broadband surface – Plasmon-polariton unidirectional coupler // Scientific Reports. 2013. № 3. P. 1918-1–1918-7.
25. Baron A., Devaux E., Rodier J.C., Hugonin J.P., Rousseau E., Genet C., Ebbesen T.W., Lalanne P. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons // Nano Lett. 2011. V. 11. P. 4207–4212.
26. Huang X.P., Brongersma M.L. Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons // Nano Lett. 2013. V. 13. P. 5420–5424.
27. Johnson P.B., Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6. P. 4370–4379.
28. Yuan X.C. Method of modern optical design. Beijing: Beijing Institute of Technology Press, 1995. P. 35–44.
29. Goodberlet J.G., Kavak H. Patterning sub-50 nm features with near-field embedded-amplitude masks // Appl. Phys. Lett. 2002. V. 81. P. 1315–1317.
30. Vieu C., Carcenac F., Pepin A., Chen Y., Mejias M., Lebib A., Manin-Ferlazzo L., Couraud L., Launois H. Electron beam lithography: Resolution limits and applications // Appl. Surface Sci. 2000. V. 164. P. 111–117.
31. Menard L.D., Ramsey J.M. Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling // Nano Lett. 2010. V. 11. P. 512–517.
32. McAlpine M.C., Friedman R.S., Lieber C.M. Nanoimprint lithography for hybrid plastic electronics // Nano Lett. 2003. V. 3. P. 443–445.
33. Srituravanich W., Fang N., Sun C., Luo Q., Zhang X. Plasmonic nanolithography // Nano Lett. 2004. V. 4. P.1085–1088.