Investigation on Nyquist pulse generation by optical frequency comb
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
J. Qian, S. Tian, L. Shang Investigation on Nyquist pulse generation by optical frequency comb (Исследование генерации найквистовских импульсов с помощью гребенки оптических частот) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 11. С. 68–72.
J. Qian, S. Tian, L. Shang Investigation on Nyquist pulse generation by optical frequency comb (Исследование генерации найквистовских импульсов с помощью гребенки оптических частот) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 68–72.
J. Qian, S. Tian, and L. Shang, "Investigation on Nyquist pulse generation by optical frequency comb," Journal of Optical Technology. 83(11), 699-702 (2016). https://doi.org/10.1364/JOT.83.000699
Compared with OFDM, Nyquist signal transmission has several unique advantages, such as lower receiver complexity, lower receiver bandwidths, and lower peak-to-average power ratios, which give better performances under fiber nonlinear impairments. Since the sinc-shaped waveforms in the time domain correspond to a rectangular spectrum in the frequency domain, the Nyquist pulses can also be obtained directly from the generation of a flat frequency comb with electro-optic modulators. In this paper, a complete theoretical analysis of Nyquist pulse generation with 3 comb lines generated with a single intensity modulator is developed. It is proved that both the amplitude and phase of the sidebands in the optical frequency comb are important for generation of Nyquist pulses. Theoretically, it is found that it is impossible to generate Nyquist pulses with more than 3 comb lines using a single intensity modulator even if 5 flat comb lines are realized. A Nyquist pulse can be generated with 9 comb lines by two cascaded intensity modulators, but the sum of the phase shift caused by the two DC voltages of the intensity modulators must be π.
Nyquist pulses, optical frequency comb, phase relationship
Acknowledgements:This work was supported by 111 project (under granted: B08038), the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2016JM6009), and the Fundamental Research Funds for the Central Universities (JY10000901005).
OCIS codes: 060.2330, 060.5625, 190.4160
References:1. Essiambre R., Tkach R.W. Capacity trends and limits of optical communication networks // Proc. IEEE. 2012. V. 100. № 10. P. 1035–1055.
2. Sano A., Yamada E., Masuda H., Yamazaki E., Kobayashi T., Yoshida E., Miyamoto Y., Kudo R., Ishihara K., Takatori Y. No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission // J. Lightwave Technol. 2009. V. 27. № 16. P. 3705–3713.
3. Hillerkuss D., Schmogrow R., Meyer M., Wolf S., Jordan M., Kleinow P., Lindenmann N., Schindler P.C., Melikyan A., Xin Yang, Ben-Ezra S., Nebendahl B., Dreschmann M., Meyer J., Parmigiani F., Petropoulos P., Resan B., Oehler A., Weingarten K., Altenhain L., Ellermeyer T., Moeller M., Huebner M., Becker J., Koos C., Freude W., Leuthold J. Single-laser 32.5 Tbit/s Nyquist WDM transmission // J. Opt. Commun. and Networking. 2012. V. 4. № 10. P. 715–723.
4. Schmogrow R., Hillerkuss D., Wolf S., Bäuerle B., Winter M., Kleinow P., Nebendahl B., Dippon T., Schindler P.C., Koos C., Freude W., Leuthold J. 512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz // Opt. Exp. 2012. V. 20. № 6. P. 6439–6447.
5. Nakazawa M., Hirooka T., Ruan P., and Guan P. Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train // Opt. Exp. 2012. V. 20. № 2. P. 1129–1140.
6. Soto M.A., Alem M., Shoaie M.A., Vedadi A., Brès C.S., Thévenaz L., Schneider T. Optical sinc-shaped Nyquist pulses of exceptional quality // Nat. Commun. 2013. V. 4. P. 2898.
7. Wang Q., Huo L., Xing Y., Zhou B. Ultra-flat optical frequency comb generator using a single-driven dualparallel Mach-Zehnder modulator // Opt. Lett. 2014. V. 39. № 10. P. 3050–3053.
8. Zang J., Wu J., Li Y., Nie X., Qiu J., Lin J. Generation of Nyquist pulses using a dual parallel Mach-Zehnder modulator // CLEO. 2014. SW1J.1. P. 1–2.
9. Sotol M.A., Alem M., Shoaie M.A., Vedadi A., Brès C.S., Thévenaz L., Schneider T. Generation of Nyquist sinc pulses using intensity modulators // Conf. Lasers and Electro-Optics. CM4G. 3. P. 1–2.
10. Wang Q., Huo L., Xing Y., Lou C., Zhou B. Cost-effective optical Nyquist pulse generator with ultra-flat optical spectrum using dual-parallel Mach-Zehnder modulators // Opt. Fiber Commun. Conf. W1G. 5. P. 1–3.
11. Wu J., Zang J.Z., Li Y., Kong D.M., Qiu J.F., Zhou S.Y., Shi J.D., Lin J.T. Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator // Opt. Exp. 2014. V. 22. № 17. P. 20463–20472.