УДК: 681.7.028,621.941.1
Effect of mounting gaps between components on the centering of lens objectives
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Латыев С.М., Белойван П.А. Влияние зазоров в сопряжениях компонентов на центрировку линзовых объективов // Оптический журнал. 2016. Т. 83. № 12. С. 36–40.
Latyev S.M., Beloyvan P.A. Effect of mounting gaps between components on the centering of lens objectives [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 12. P. 36–40.
S. M. Latyev and P. A. Beloyvan, "Effect of mounting gaps between components on the centering of lens objectives," Journal of Optical Technology. 83(12), 738-742 (2016). https://doi.org/10.1364/JOT.83.000738
Mounting gaps present when lenses are being matched with cells and when lens units are being matched with the objective barrel cause decentering of the objective’s optical system. This decentering leads to an increase in the monochromatic and chromatic aberrations of the produced image. This study considers the calculation of the probable values of mounting gaps and the displacements of components in the gaps. Further, centering methods are proposed for lenses in the gaps of the cells and for lens components of objectives in the poker-chip stacking configuration.
lens, cells, centering, adjustment
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (02.G25.31.0195).
OCIS codes: 220.0220; 230.0230
References:1. N. N. Gubel, Aberrations of Decentered Optical Systems (Machinostroenie, Leningrad, 1975).
2. V. A. Zverev, E. S. Rytova, and I. N. Timoshchuk, “How the decentering of surfaces of revolution affects the position of the image plane,” J. Opt. Technol. 77(6), 357–361 (2010) [Opt. Zh. 77(6), 8–13 (2010).
3. M. M. Rusinov, A. P. Grammatin, P. D. Ivanov, L. N. Andreev, N. A. Agaltsov, G. G. Ishanin, O. N. Vasilevskii, and S. A. Rodionov, eds., Computational Optics (Machinostroenie, Leningrad, 1984).
4. S. M. Latyev, High Accuracy Optical Instrument Design (Lan’, Saint Petersburg, 2015).
5. F. P. Khlebnikov and V. I. Shevelev, “Centering of lenses in optical systems,” Sov. J. Opt. Technol. (11), 36–41 (1988).
6. P. R. Yoder, ed., Mounting Optics in Optical Instruments (SPIE, Bellingham, Washington, 2008).
7. L. I. Krynin, Basics of Design of Lens Structures (SPbUITMO, Saint Petersburg, 2006).
8. S. M. Latyev, D. M. Rumyantsev, and P. A. Kuritsyn, “Design and process methods of centering lens systems,” J. Opt. Technol. 80(3), 197–200 (2013) [Opt. Zh. 80(3), 92–96 (2013)].
9. J. Heinisch, “Zentrierfehler messen, Optiken automatisch justieren und montieren,” Photonik (6), 46–48 (2008).
10. S. M. Latyev, D. B. Bao, P. A. Beloivan, and A. G. Tabachkov, “Analysis of certain issues in the assembly of fast objectives,” J. Opt. Technol. 82(12), 796–799 (2015) [Opt. Zh. 82(12), 23–28 (2015)].
11. D. B. Bao, S. M. Latyev, and R. Theska, “Automation of lenses centering at gluing in the frame,” Sci. Tech. J. Inf. Technol. Mech. Opt. 15(6), 1030–1035 (2015).
12. S. M. Latyev, D. B. Bao, and V. P. Tregub, “Method for centering a lens in a cell and the cell for its implementation,” Russian patent 2542636 (2015).