УДК: 616.092.4, 628.978.3, 535.372
Experimental comparison of methods for fluorescence visualization of glial tumors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Папаян Г.В., Мартынов Б.В., Свистов Д.В. Экспериментальное сравнение способов флуоресцентной визуализации глиальных опухолей // Оптический журнал. 2016. Т. 83. № 12. С. 69–79.
Papayan G.V., Martynov B.V., Svistov D.V. Experimental comparison of methods for fluorescence visualization of glial tumors [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 12. P. 69–79.
G. V. Papayan, B. V. Martynov, and D. V. Svistov, "Experimental comparison of methods for fluorescence visualization of glial tumors," Journal of Optical Technology. 83(12), 765-772 (2016). https://doi.org/10.1364/JOT.83.000765
The effectiveness of the surgical removal of glial tumors of the brain largely depends on the visualization of the malignant growth loci. The amino acid 5-aminolevulinic acid, which induces the accumulation of protoporphyrin IX in tumor cells, is used for these purposes. It is detected by the red fluorescence that characterizes porphyrins. Various methods are used for fluorescence visualization. This paper compares them, using test solutions with various concentrations of coproporphyrin III. The results showed that methods in which the exciting radiation is completely blocked are more sensitive by a factor of 4.3–4.7 by comparison with the traditional method, in which part of the exciting radiation is used to visualize the entire operating field in reflected blue light. Either coherent or incoherent light sources can be used to implement the new approach, with the former being preferable. The advantages are illustrated with examples of clinical studies.
fluorescence diagnostics, neurosurgery
OCIS codes: 170.0170, 170.6280, 170.6510, 170.3880, 170.3880, 170.1610
References:1. W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. Goetz, R. Kiefmann, and H. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42(3), 518–526 (1998).
2. B. W. Pogue, S. Gibbs-Strauss, P. A. Valdés, K. Samkoe, D. W. Roberts, and K. D. Paulsen, “Review of neurosurgical fluorescence imaging methodologies,” IEEE J. Sel. Top. Quantum Electron. 16(3), 493–505 (2010).
3. M. J. Colditz, K. V. Leyen, and R. L. Jeffree, “Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects,” J. Clin. Neurosci. 19(12), 1611–1616 (2012).
4. J. T. Liu, D. Meza, and N. Sanai, “Trends in fluorescence image-guided surgery for gliomas,” Neurosurgery 75(1), 61–71 (2014).
5. C. Ewelt, A. Nemes, V. Senner, J. Wolfer, and B. Brokinkel, “Fluorescence in neurosurgery: its diagnostic and therapeutic use. Review of the literature,” J. Photochem. Photobiol. B 148, 302–309 (2015).
6. A. A. Potapov, A. G. Gavrilov, S. A. Goryanov, D. A. Gol’bin, P. V. Zelenkov, G. L. Kobyakov, V. A. Okhlopkov, V. Yu. Zhukov, L. V. Shishkina, V. A. Shurkha, V. B. Loshchenov, T. A. Savel’eva, P. V. Grachev, M. N. Kholodtsova, S. G. Kuz’min, and G. N. Vorozhtsov, “Intraoperation fluorescence diagnosis and laser spectroscopy in the surgery of glial tumors of the brain,” Voprosy Neı˘rokhir. (5), 3–12 (2012).
7. S. A. Goryaı˘nov, A. A. Potapov, V. B. Loshchenov, and T. A. Savel’eva, Fluorescence Navigation and Laser Spectroscopy in the Surgery of Gliomas of the Brain (MediaSfera, Moscow, 2014).
8. A. Ehrhardt, H. Stepp, K.-M. Irion, W. Stummer, D. Zaak, R. Baumgartner, and A. Hofstetter, “Fluorescence detection of human malignancies using incoherent light systems,” Med. Laser Appl. 18, 27–35 (2003).
9. G. V. Papayan and U. Kang, “Fluorescence endoscopic video system,” J. Opt. Technol. 73(10), 739–743 (2006) [Opt. Zh. 64(10), 94–99 (2006)].
10. U. Kang, G. V. Papayan, S.-J. Bae, V. B. Berezin, and S. Kim, “Fluorescence video dermatoscope,” J. Opt. Technol. 75(1), 24–29 (2008) [Opt. Zh. 75(1), 32–38 (2008)].
11. U. Kang, G. V. Papayan, B. B. Berezin, S.-J. Bae, S. V. Kim, and N. N. Petrishchev, “Multispectral fluorescence organoscopes for in vivo studies of laboratory animals and their organs,” J. Opt. Technol. 75(9), 623–628 (2011) [Opt. Zh. 78(9), 82–90 (2011)].
12. U. Kang, G. V. Papayan, N. A. Obukhova, S. J. Bae, D. S. Lee, M. W. Jung, V. B. Berezin, A. A. Motyko, D. P. Plokhikh, and S. A. Slobodenyuk, “System for fluorescence diagnosis and photodynamic therapy of cervical disease,” J. Opt. Technol. 82(12), 815–823 (2015) [Opt. Zh. 82(12), 47–59 (2015)].
13. G. V. Papayan, V. B. Berezin, U. Kang, S.-J. Bae, S. A. Slobodenyuk, and S. V. Kim, “Television digital multispectral system for fluorescence organoscopy,” in Materials of the Eighth International Conference on Television: Data Transmission and Processing, St. Petersburg, Russia, May 30–31, 2011, (LÉTI, 2011), pp. 72–78.
14. N. N. Petrishchev, S. V. Kim, V. B. Berezin, and G. V. Papayan, “Autofluorescence visualization of the vessels of the microcirculatory system,” Reg. Sist. Krovoobrashch. (4), 75–77 (2010).
15. B. V. Martynov, Yu. E. Matveeva, G. V. Papayan, N. N. Petrishchev, and D. V. Svistov, “First experiment of the fluorescence diagnosis of gliomas, using a portable digital complex,” in Abstracts of Reports of the Siberian International Neurosurgery Forum (Novosibirsk, 2012), p. 233.
16. Yu. E. Anokhina, B. V. Gaı˘dar, B. V. Martynov, D. E. Alekseev, D. V. Svistov, and G. V. Papayan, “The effect of the volume of surgical intervention using intraoperative fluorescence diagnosis on the course of the postoperative period in patients with malignant gliomas of the brain,” Ross. Neı˘rokhirurg. Zh. im. Prof. A. L. Polenova 6(2), 22–28 (2014).
17. Yu. E. Anokhina, B. V. Gaı˘dar, B. V. Martynov, D. V. Svistov, G. V. Papayan, and D. I. Grigor’evskiı˘, “Predicting the significance of the volume of surgical intervention when intraoperative fluorescence diagnosis is used in patients with malignant gliomas of the brain,” Vest. Ross. Voenno-Med. Akad. 1(45), 19–24 (2014).
18. G. V. Papayan, D. V. Svistov, B. V. Martynov, and N. N. Petrishchev, “Method of intraoperation detection of the presence and localization of glial neoplasms of the brain,” Russian Patent No. 2,561,030 (2015).
19. D. V. Svistov, G. V. Papayan, V. M. Zhurba, B. V. Martynov, and A. I. Gavoronski, “Device for fluorescence navigation and spectroscopy,” Russian Patent No. 148,138 (2014).
20. G. V. Papayan, B. V. Martynov, A. I. Kholyavin, V. B. Nizkovolos, D. V. Svistov, N. N. Petrishchev, I. S. Zheleznyak, V. A. Fokin, V. S. Chirskiı˘, S. E. Bushurov, and I. N. Chirko, “Stereotactic fluorescence biospectroscopy in the diagnosis of glial neoplasms of the brain,” in Critical Problems of Laser Medicine, N. N. Petrishchev, ed. (Lan’, St. Petersburg, 2016), pp. 139–151.
21. U. Kang, G. V. Papayan, B. B. Berezin, N. N. Petrishchev, and M. M. Galagudza, “Spectrometer for fluorescence reflection biomedical research,” J. Opt. Technol. 80(1), 40–48 (2013) [Opt. Zh. 80(1), 56–67 (2013)].
22. http://www.pdt.niopik.ru/include_areas/docs/ala_brain_tumors.pdf.
23. J. K. Bowmaker and H. J. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. 298, 501–511 (1980).
24. S. A. Goryaı˘nov, “Intraoperation fluorescence diagnostics and laser biospectroscopy in the surgery of the gliomas of the brain,” Author’s abstract of dissertation for candidate of physicomathematical sciences (NII Neı˘rokhirurgii im. Akad. N. N. Burdenko RAMN, Moscow, 2013).