УДК: 535.016, 535.15, 535.041.08
Creating and investigating the optical and electrophysical properties of a silicon nanocomposite that contains bismuth silicate
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Григорьев Л.В., Михайлов А.В. Создание и исследование оптических и электрофизических свойств кремниевого нанокомпозита, содержащего силикат висмута // Оптический журнал. 2016. Т. 83. № 3. С. 66–70.
Grigoriev L.V., Mikhailov A.V. Creating and investigating the optical and electrophysical properties of a silicon nanocomposite that contains bismuth silicate [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 66–70.
L. V. Grigor’ev and A. V. Mikhaĭlov, "Creating and investigating the optical and electrophysical properties of a silicon nanocomposite that contains bismuth silicate," Journal of Optical Technology. 83(3), 189-192 (2016). https://doi.org/10.1364/JOT.83.000189
A new method is presented for creating a silicon nanocomposite that contains bismuth silicate. The results are shown of a study of the structural, optical, and electrophysical properties of a thin layer of oxidized porous silicon that contains bismuth silicate. X-ray structural studies showed that a bismuth silicate phase is present in this layer. The absorption coefficient of the layer in the wavelength range from 400 to 900 nm was no greater than 70 cm−1. This makes it possible to use it to create optical sensors of the integrated-optics type and in microstructures of silicon photonics. Thermal-activation studies of the composite in the temperature range from 100 to 600 K made it possible to reconstruct the energy distribution function of traps over the activation energy, needed for predicting its optical properties.
oxidized porous silicon, absorption spectrum, bismuth silicate
Acknowledgements:This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (Identifier PNIÉR: RFMEFI58114X0006).
OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160
References:1. B. A. Krasyuk, O. G. Semenov, A. G. Sheremet’ev, and V. A. Shesterikov, Lightguide Sensors (Mashinostroenie, Moscow, 1990).
2. Yu. K. Rebrin, Controlling an Optical Beam in Space (Sov. Radio, Moscow, 1977).
3. T. V. Potapov, “Experimental study of the temperature stability of magnetic field sensors based on Bi12 SiO20 crystals,” Tech. Phys. Lett. 24(6), 423–426 (1998) [Pis’ma Zh. Tekh. Fiz. 24(11), 26–33 (1998)].
4. L. V. Grigor’ev, I. M. Grigor’ev, M. V. Zamoryanskaya, V. I. Sokolov, and L. M. Sorokin, “Transport properties of thermally oxidized porous silicon,” Tech. Phys. Lett. 32(9), 750–753 (2006) [Pis’ma Zh. Tekh. Fiz. 32(17), 33–41 (2006)].
5. A. Orlando and W. Rainer, Science and Technology of Electroceramic Thin Films (Kluwer Academic, Dordrecht, 1994).
6. E. O. Klebanskiı˘, A. Yu. Kudzin, V. M. Pasal’skiı˘, S. N. Plyaka, and G. Kh. Sokolyanskiı˘, “Thin sol-gel bismuth silicate films,” Phys. Solid State 41(6), 913–915 (1999) [Fiz. Tverd. Tela 41(6), 1003–1005 (1999)].
7. L. V. Grigor’ev, V. G. Nefedov, O. V. Shakin, A. V. Mikhaı˘lov, and E. N. Eliseev, “Study of the structural and optical properties of thin polycrystalline zinc oxide films obtained by the ion-plasma method,” J. Opt. Technol. 82(5), 315–318 (2015) [Opt. Zh. 82(5), 66 (2015)].
8. Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977).
9. T. V. Panchenko, L. M. Karpova, and V. M. Duda, “Dielectric relaxation in Bi12SiO20 :Cr crystals,” Phys. Solid State 42(4), 689–693 (2000) [Fiz. Tverd. Tela 42(4), 671–675 (2000)].
10. T. V. Panchenko and G. V. Snezhnoı˘, “Electrically active defects in Bi12SiO20 crystals undoped and doped with Al and Ga ions,” Phys. Solid State 35(11), 1446–1449 (1993) [Fiz. Tverd. Tela 35(11), 2945–2951 (1993)].
11. T. V. L. Panchenko and M. Karpova, “Electrically active defects in BiSiO crystals undoped and doped with Cr and Mn ions,” Phys. Solid State 40, 432–434 (1998) [Fiz. Tverd. Tela 40(3), 472–476 (1998)].
12. A. L. Tolstik, A. Yu. Matusevich, M. G. Kisteneva, S. M. Shandarov, S. G. Itkin, A. E. Mandel’, Yu. F. Kargin, Yu. F. Kul’chin, and R. V. Romashko, “Spectral dependence of absorption photoinduced in a Bi12TiO20 crystal by 532-nm laser pulses,” Quantum Electron. 37(11), 1027–1032 (2007) [Kvant. Elektron. (Moscow) 37(11), 1027–1032 (2007)].
13. V. Ya. Arsenin and A. N. Tikhonov, Numerical Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1991).