УДК: 551.508
Method of determining the surface area and volume of erythrocytes from nephelometric measurements
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кугейко М.М., Смунёв Д.А. Метод определения площади поверхности и объема эритроцитов по нефелометрическим измерениям // Оптический журнал. 2016. Т. 83. № 5. С. 4–10.
Kugeiko M.M., Smunev D.A. Method of determining the surface area and volume of erythrocytes from nephelometric measurements [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 5. P. 4–10.
M. M. Kugeiko and D. A. Smunev, "Method of determining the surface area and volume of erythrocytes from nephelometric measurements," Journal of Optical Technology. 83(5), 269-274 (2016). https://doi.org/10.1364/JOT.83.000269
A rapid method is proposed for determining the surface area and volume of erythrocytes represented as biconcave discoids. The method is based on establishing regression relationships between the parameters to be determined and the scattering index. It is shown that using the indices for angles of 6° and 17° makes it possible to determine the surface area of erythrocytes to within about 1% and the volume to within about 2%.
erythrocytes, biconcave discoid, surface area, volume, scattering index, regression relationships
Acknowledgements:The optical characteristics of scattered radiation were calculated at the operation center of the national grid of the Republic of Belarus [26]. The authors express gratitude to department manager Aleksandr Grigor’evich Rymarchuk and to national grid coordinator Oleg Petrovich Chizh for collaboration and all-around help in carrying out the numerical experiment.
OCIS codes: 170.0170, 290.0290, 290.5850, 290.5855
References:1. B. J. Bain, I. Bates, and M. A. Laffan, Dacie and Lewis Practical Hæmatology (Churchill Livingstone, London, 2001).
2. P. B. Canham and A. C. Burton, “Distribution of size and shape in populations of normal human red cells,” Circ. Res. 22(3), 405–422 (1968).
3. E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
4. Y. C. Fung, W. C. Tsang, and P. Patitucci, “High-resolution data on the geometry of red blood cells,” Biorheology 18, 369–385 (1981).
5. G. V. Richieri, S. P. Akeson, and H. C. Mel, “Measurement of biophysical properties of red blood cells by resistive pulse spectroscopy: volume, shape, surface area, and deformability,” J. Biochem. Biophys. Meth. 11(2–3), 117–131 (1985).
6. P. A. Tarasov, M. A. Yurkin, P. A. Avrorov, K. A. Semyanov, A. G. Hoekstra, and V. P. Maltsev, “Optics of erythrocytes,” in Optics of Biological Particles, A. G. Hoekstra, V. P. Maltsev, and G. Videen, eds. (Springer, Dordrecht, 2007), pp. 243–259.
7. K. G. Engstrom and H. J. Meiselman, “Optical and mathematical corrections of micropipette measurements of red-blood-cell geometry during anisotonic perfusion,” Cytometry 17(4), 279–286 (1994).
8. M. A. Yurkin, “Modeling of light scattering by blood cells by means of discrete dipoles,” Dissertation for Candidate of Physical–Mathematical Sciences (Novosibirsk, 2008).
9. M. Kugeı˘ko and D. Smunev, “Analysis of the information content of the polarization of scattered radiation in the diagnosis of the microphysical parameters of erythrocytes,” Vest. BGU Fiz. Mat. Inf. 19–23 (2012).
10. M. Kugeı˘ko and D. Smunëv, “Method for determining the asphericity and microphysical parameters of erythrocytes from the directional scattering coefficient,” Opt. Spectrosc. 117(4), 679–685 (2014) [Opt. Spektrosk. 117(4), 698–704 (2014)].
11. M. Kugeiko and D. Smunev, “Analysis of the informativeness of polarization and nephelometric measurements in diagnostics of the microphysical parameters of erythrocytes,” Opt. Spectrosc. 113(4), 446–450 (2012) [Opt. Spektrosk. 113(4), 490–495 (2012)].
12. D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985).
13. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37(13), 2735–2748 (1998).
14. E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” Opt. Commun. 244(1–6), 15–23 (2005).
15. P. Mazeron and S. Müller, “Dielectric or absorbing particles: EM surface fields and scattering,” J. Opt.-Nouv. Rev. Opt. 29(2), 68–77 (1998).
16. V. N. Lopatin, A. V. Priezzhev, and A. Yu. Afanasenko, Light-Scattering Methods in the Analysis of Dispersed Biological Media (Fizmatlit, Moscow, 2004).
17. I. A. Kassirskiı˘ and G. A. Alekseev, Clinical Methodology (Meditsina, Moscow, 1970).
18. A. van Gitter and U. L. Heilmeyer, eds., Taschenbuch klinischer Funktionsprufungen (VEB Gustav Fischer Verlag, Jena, 1978; Meditsina, Moscow, 1966).
19. Z. D. Fedorova, K. M. Abdulkadyrov, S. S. Bessmel’tsev, and M. A. Kotovshchikova, “Variations of certain rheological properties of erythrocytes with a number of diseases of the blood system,” Gematol. Transfuziol. (2), 12–17 (1989).
20. M. M. Kugeı˘ko and S. A. Lysenko, “Determination of the hematocrit of human blood from the spectral values of the attenuation and small-anglecoefficients,” Opt. Spektrosc. 104(4), 630–634 (2008) [Opt. Spectrosk. 104(4), 654–659 (2008)].
21. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
22. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79, 775–824 (2003).
23. D. A. Smunev, P. C. Chaumet, and M. A. Yurkin, “Rectangular dipoles in the discrete dipole approximation,” J. Quant. Spectrosc. Radiat. Transfer 156, 67–79 (2015).
24. C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
25. Yu. Timofeev and A. Vasil’ev, Principles of Theoretical Atmospheric Optics (SPbGU, St. Petersburg, 2007).
26. Operation center of the national grid, http://noc.grid.by/.
27. MongoDB, https://www.mongodb.org/.
28. V. Kolemaev and V. Kalinina, Probability Theory and Mathematical Statistics (INFRA-M, Moscow, 1997).