ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Structural and optical characterization of Sb-doped ZnO co-sputtered thin films

For Russian citation (Opticheskii Zhurnal):

M. M. Abd El-Raheem, S. A. Amin, M. A. Alharbi, A. M. Badawi Structural and optical characterization of Sb-doped ZnO co-sputtered thin films (Определение структурных и оптических параметров тонких пленок из совместно распыленных Sb и ZnO) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 6. С. 63–74.

 

M. M. Abd El-Raheem, S. A. Amin, M. A. Alharbi, A. M. Badawi Structural and optical characterization of Sb-doped ZnO co-sputtered thin films (Определение структурных и оптических параметров тонких пленок из совместно распыленных Sb и ZnO) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 6. P. 63–74.

For citation (Journal of Optical Technology):

M. M. Abd El-Raheem, S. A. Amin, M. A. Alharbi, and A. M. Badawi, "Structural and optical characterization of Sb-doped ZnO co-sputtered thin films," Journal of Optical Technology. 83(6), 375-384 (2016). https://doi.org/10.1364/JOT.83.000375

Abstract:

This paper reports the structural and optoelectronics properties of prepared pure and Sb-doped ZnO nanoparticles using the co-sputtering technique. The phase purity and crystallite size of synthesized ZnO and Sb-doped nano-sized particles were characterized and examined using X-ray diffraction and scanning electron microscopy. The elemental analysis was examined by using energy-dispersive X-ray spectroscopy (EDX). Optical properties were carried out by employing UV-visible spectroscopy to study the optoelectronic properties of Sb-doped ZnO thin film. These films are highly transparent in the visible region and exhibit a steep absorption edge at 380 nm. The average value of the optical gap belonging to the thin films deposited under different conditions is 3.17 eV. The refractive index (n) behaves as normal dispersion and decreases with increasing both the rate of flow and thickness. The dispersion energy, single oscillator energy, and optical conductivity increase with increasing the rate of flow of argon.

Keywords:

thin films, co-sputtering, optical gap, refractive index, dispersion energy

OCIS codes: 310.6860

References:

1. Tang Z.K., Wong G.K.L., Yu P., Kawasaki M., Ohtomo A., Koinuma, H., Segawa Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films // App. Phys. Lett. 1998. V. 72. № 25. P. 3270–3272.
2. Look D.C. Recent advances in ZnO materials and devices // Mater. Sci. Eng. B. 2001. V. 80. № 1–3. P. 383–387.
3. Kohan A.F., Ceder G., Morgan D., Van de Walle C.G. First-principles study of native point defects in ZnO // Physical Review B. 2000. V. 61. № 22. P. 15019–15027.
4. Look D.C., Hemsky J.W., Sizelove J.R. Residual native shallow donor in ZnO // Physical Review Letters. 1999. V. 82. № 12. P. 2552–2555.
5. Kazunori Minegishi, Yasushi Koiwai, Yukinobu Kikuchi, Koji Yano, Masanobu Kasuga, Azuma Shimizu. Growth of p-type zinc oxide films by chemical vapor deposition // Jpn. J. Appli. Phys. 1997. V. 36. № 11A. P. L1453.
6. Lu J.G., Ye Z.Z., Zhuge F., Zeng Y.J., Zhao B.H., Zhu L.P. p-type conduction in N–Al co-doped ZnO thin films // Appl. Phys. Lett. 2004. V. 85. № 15. P. 3134–3135.
7. Liu J., Shan C., Shen H., Li B., Zhang Z., Liu L., Zhang., Shen D. ZnO light-emitting device with a lifetime of 6.8 hours // Appl. Phys. Lett. 2012. V. 101. № 1. P. 011106.
8. Mathew J., Hitosh T., Tomoji K. p-type electrical conduction in ZnO thin films by Ga and N codoping // Japanese Journal of Applied Physics. 1999. V. 38. № 11A. P. L1205.
9. Chen L.L., Lu J.G., Ye Z.Z., Lin Y.M., Zhao B.H., Ye Y.M., Li J.S., Zhu L.P. p-type behavior in In–N codoped ZnO thin films // Appl. Phys. Lett. 2005. V. 87. № 25. P. 252106.
10. Limpijumnong S., Li X., Wei S.-H., Zhang S.B. Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO // Appl. Phys. Lett. 2005. V. 86. № 21. P. 211910.
11. Zhao B.J., Yang H.J., Du. T.G., Miao G.Q., Zhang Y.T, Gao Z.M., Yang T.P., Wang J.Z., Li W.C., Ma X.T., Yang B.Y., Liu D.L., Liu X.J. Fang. High-quality ZnO/GaN/Al2O3 heteroepitaxial structure grown by LP–MOCVD // J.Cryst. Growth. 2003. V. 258. № 1, 2. P. 130–134.

12. Limpijumnong S., Zhang S.B., Wei S.-H., Park C.H. Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide // Phys. Rev. Lett. 2004. V. 92. № 1. P. 155504.
13. Xiu F.X., Yang Z., Mandalapu L.J., Zhao D.T., Liu J.L., Beyermann W.P. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy // Appl. Phys. Lett. 2005. V. 87. № 15. P. 152101.
14. Pan X., Ye Z., Li J., Gu X., Zeng Y., He H., Zhu L., Che Y. Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition // Appl. Surf. Sci. 2007. V. 253. № 11. P. 5067–5069.
15. Zhao Z.-W., Hu L.-Z., Zhang H.-Q., Sun J.-C., Bian J.-M., Sun K.-T., Chen X., Zhao J.-Z., Li X., Zhu J.-X. Effect of different substrate temperature on Sb-doped ZnO thin films prepared by pulsed laser deposition on sapphire substrates // Chin. Phys. Lett. 2010. V. 27. № 1. P. 017301.
16. Tolansky S. Multiple-beam interferometry surface and films. London: Oxford Univesity Press, 1978.
17. El-Nahass M.M. Optical properties of tin diselenide films // J. Mate. Sci. 1992. V. 27. № 24. P. 6597–6604.
18. Giulio M.D., Micocci G., Rella R., Siciliano P., Tepore A. Optical absorption of tellurium suboxide thin films // Phys. Status Solidi A. 1993. V. 136. № 2. P. K101–K104.
19. El-Nahass M.M., El-Deeb A.F., Metwally H.S., Hassanien A.M. Structural and optical properties of iron (III) chloride tetraphenylporphyrin thin films // Eur. Phys. J. Appl. Phys. 2010. V. 52. № 1. P. 10403.
20. El-Nahass M.M., El-Deeb A.F., Metwally H.S., El-Sayed H.E.A., Hassanien A.M. Influence of X-ray irradiation on the optical properties of iron (III) chloride tetraphenylporphyrin thin films // Solid State Sci. 2010. V. 12. № 4. P. 552–557.
21. Mondal S., Kanta K.P., Mitra P. Preparation of Al-doped ZnO (AZO) thin film by SILAR // J. Phy. Sci. 2008. V. 12. P. 221–229.
22. Zhou H.-m., Yi D.-q., Yu Z.-m., Xiao L.-r., Li J. Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties // Thin Solid Films. 2007. V. 515. № 17. P. 6909–6914.
23. Jiménez-González A.E., Soto Urueta J.A., Suárez-Parra R. Optical and electrical characteristics of aluminumdoped ZnO thin films prepared by solgel technique // J. Cryst. Growth. 1998. V. 192. № 3–4. P. 430–438.
24. Gupta V., Mansingh A. Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film // J. Appl. Phys. 1996. V. 80. № 2. P. 1063–1073.
25. Zhao Z., Hu L., Zhang H., Sun J., Bian J., Zhao J. Effect of different annealing temperature on Sb-doped ZnO thin films prepared by pulsed laser deposition on sapphire substrates // Appl. Surf. Sci. 2011. V. 257. № 11. P. 5121–5124.
26. Park K., Seong J.K., Nahm S. Improvement of thermoelectric properties with the addition of Sb to ZnO // J. Alloy. Compd. 2008. V. 455. № 1–2. P. 331–335.
27. Wasa K., Kitabatake M., Adachi H. Thin film materials technology (sputtering of compound materials). William Andrew publishing. Springer, 2005. 537 p.
28. El-Raheem M.M.A., El-Husainy N.M., Ali H.M. Optical and electrical measurements on electron beam evaporated CdTe thin films // Optoelect. Adv. Mat. 2009. V. 3. № 6. P. 533–538.
29. Zengir B., Bayhan M.S.K. Optical absorption in polycrystalline CdTe thin films // Journal of arts and sciences Sayt: 5, Mayts. 2006. V. 5. P. 103–116.
30. Alhuthali A., El-Nahass M.M., Atta A.A., Abd El-Raheem M.M., Elsabawy K.M., Hassanien A M. Study of topological morphology and optical properties of SnO2 thin films deposited by RF sputtering technique // J. Lumin. 2015. V. 158. P. 165–171.
31. Swanepoel R. Determination of the thickness and optical constants of amorphous silicon // J. Phys. E: Sci. Instrum. 1983. V. 16. № 12. P. 1214–1222.
32. Swanepoel R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films // J. Phys. E: Sci. Instrum. 1984. V. 17. № 10. P. 896–903.
33. Manifacier J.C., Gasiot J., Fillard J.P. A simple method for the determination of the optical constants n, ħ and the thickness of a weakly absorbing thin film // J. Phys. E: Sci. Instrum. 1976. V. 9. P. 1002–1004.
34. Shaaban E.R., El-Kabnay N., Abou-sehly A.M., Afify N. Determination of the optical constants of thermally evaporated amorphous As40S60, As35S65 and As30S70 using transmission measurements // Phys. B: Cond. Matt. 2006. V. 381. № 1–2. P. 24–29.
35. El-Nahass M.M., Atta A.A., Abd El-Raheem M.M., Hassanien A.M. Structural and optical properties of DC Sputtered Cd2SnO4 nanocrystalline films // J. Alloy. Compd. 2014. V. 585. P. 1–6.
36. El-Nahass M.M., El-Gohary Z., Soliman H.S. Structural and optical studies of thermally evaporated CoPc thin films // Opt. Laser Tech. 2003. V. 35. № 7. P. 523–531.
37. Wemple S.H., DiDomenico M. Behavior of the electronic dielectric constant in covalent and ionic materials // Phys. Rev. B. 1971. V. 3. № 4. P. 1338–1351.