Magneto-optical properties of Co-Zn ferrite thin films
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
M. Moradi, S. Manouchehri, S. Kiani Magneto-optical properties of Co-Zn ferrite thin films (Магнитооптические свойства ферритовых тонких пленок Co-Zn) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 7. С. 38–41.
M. Moradi, S. Manouchehri, S. Kiani Magneto-optical properties of Co-Zn ferrite thin films (Магнитооптические свойства ферритовых тонких пленок Co-Zn) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 7. P. 38–41.
M. Moradi, S. Manouchehri, and S. Kiani, "Magneto-optical properties of Co-Zn ferrite thin films," Journal of Optical Technology. 83(7), 419-421 (2016). https://doi.org/10.1364/JOT.83.000419
In the present research, we have investigated the magneto-optical properties of Co-Zn ferrite thin films with different thicknesses of 60, 120, and 180 nm. The Faraday rotation angle for the thin films of ferrite—subjected to a continuous magnetic field parallel to the propagation direction of a laser beam—was measured. The results showed linear dependences of the Faraday rotation angle on the external magnetic field and film thicknesses. Our experimental results were completely in agreement with the theory: the Verdet constant was discovered to equal 4.58×107 degrees/mT. In addition, the findings show promise for designing Faraday devices based on thin films.
Faraday rotation, magneto-optical properties, thin film, Faraday device
Acknowledgements:Our deepest appreciation is extended to Dr. Sarrami of the English department of Maleke-Ashtar University of technology for corrections and proofreading the English manuscript.
OCIS codes: 160.3820, 230.2240
References:1. Valenzuela R. Novel applications of ferrites // Phys. Res. Inter. 2012. V. 2012. P. 591839–591845.
2. Bhowmik R.N., Ranganathan R., Nagarajan R, Ghosh B., and Kumar S. Role of strain-induced anisotropy on magnetic enhancement in mechanically alloyed Co0.2Zn0.8Fe2O4 nanoparticle // Phys. Rev. B. 2005. V. 72. P. 094405–10.
3. Júnior A.F., Lima E.C.O., Novak M.A., and Wells Jr P.R. Synthesis of nanoparticles of CoxFe(3−x)O4 by combustion reaction method // J. Magn. Magn. Mater. 2007. V. 308. P. 198–202.
4. Cullity B.D. and Graham C.D. Introduction to Magnetic Materials. 2nd edition. New Jersey: IEEE Press, John Wiley & Sons, 2009.
5. Akther Hossain A.K.M., Tabata H., and Kawai T. Magnetoresistive properties of Zn1−xCoxFe2O4 ferrites // J. Magn. Magn. Mater. 2008. V. 320. P. 1157–1162.
6. Correa N., Chuaqui H., Wyndham E., Veloso F., Valenzuela J., Favre M., and Bhuyan H. Current measurement by Faraday effect on GEPOPU // J. Phys: Conf. Series (OPEN ACCESS). 2014. V. 511. P. 012026.
7. Martinez L., Cecelja F., and Rakowski R. A novel magneto-optic ferrofluid material for sensor applications // Sensor Actuat. A. 2005. V. 123–124. P. 438–443.
8. Monin J., Brevet-Philibert O., Cabuil V., and Delaunay L. Polarization modulator using ferrofluid material // Proc. SPIE of Optics in Complex Systems. 1990. V. 1319. P. 601–602.
9. Mozaffari M., Manouchehri S., Yousefi M.H., and Amighian J. The effect of solution temperature on crystallite size and magnetic properties of Zn substituted Co ferrite nanoparticles // J. Magn. Magn. Mater. 2010. V. 322. P. 383–388.