ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Two-dimensional invisibility anti-cloak structured by a homogeneous anisotropic medium

For Russian citation (Opticheskii Zhurnal):

Xuan Liu, Yicheng Wu, Chengdong He, Yuzhuo Wang, Xiaojia Wu, Jing Zhou Two-dimensional invisibility anti-cloak structured by a homogeneous anisotropic medium (Модификация устройства двумерной невидимости обтекания с использованием однородной анизотропной среды) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 9. С. 28–32.

 

Xuan Liu, Yicheng Wu, Chengdong He, Yuzhuo Wang, Xiaojia Wu, Jing Zhou Two-dimensional invisibility anti-cloak structured by a homogeneous anisotropic medium (Модификация устройства двумерной невидимости обтекания с использованием однородной анизотропной среды) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 28–32.

For citation (Journal of Optical Technology):

Xuan Liu, Yicheng Wu, Chengdong He, Yuzhuo Wang, Xiaojia Wu, and Jing Zhou, "Two-dimensional invisibility anti-cloak structured by a homogeneous anisotropic medium," Journal of Optical Technology. 83(9), 532-535 (2016). https://doi.org/10.1364/JOT.83.000532

Abstract:

A two-dimensional invisibility anti-cloak constructed from a positive homogeneous anisotropic medium is proposed that is easier to implement compared with previously reported invisibility anti-cloak structures. Theoretical analysis and numerical simulations show that the proposed invisibility anti-cloak can allow external electromagnetic waves to penetrate into the cloak region, while the concealing effect of the invisibility cloak is not affected for outside viewers. Design details and full-wave simulation results are provided.

Keywords:

anti-cloak, transformation optics, metamaterial

Acknowledgements:

This work is financially supported by the National Natural Science Foundation of China (grant No. 61275130). The authors also appreciate the help in numerical simulations provided by Prof. Zhengming Sheng and Dr. Jun Zheng in Shanghai Jiaotong University.

OCIS codes: 250.0040, 230.3205, 120.4570

References:

1. Pendry J.B., Schurig D., and Smith D.R. Controlling electromagnetic fields // Science. 2006. V. 312. № 5781. P. 1780–1782.
2. Leonhardt U. Optical conformal mapping // Science. 2006. V. 312. № 5781. P. 1777–1780.
3. Schurig D., Mock J.J., Justice B.J., Cummer S.A., Pendry J.B., Starr A.F., and Smith D.R. Metamaterial electromagnetic cloak at microwave frequencies // Science. 2006. V. 314. № 5801. P. 977–980.
4. Rahm M., Schurig D., Roberts D.A., Cummer S.A., Smith D.R., and Pendry J.B. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations // Photonics and Nanostructures-Fundamentals and Applications. 2008. V. 6. № 1. P. 87–95.
5. Li J. and Pendry J.B. Hiding under the carpet: A new strategy for cloaking // Phys. Rev. Lett. 2008. V. 101. № 20. P. 2952–2966.
6. Liu R., Ji C., Mock J.J., Chin J.Y., Cui T.J., and Smith D.R. Broadband ground-plane cloak // Science. 2009. V. 323. № 5912. P. 366–269.
7. Renger J., Kadic M., Dupont G., Aćimović S.S., Guenneau S., Quidant R., and Enoch S. Hidden progress: Broadband plasmonic invisibility // Opt. Exp. 2010. V. 18. № 15. P. 15757–15768.
8. Kadic M., Bückmann T., Schittny R., and Wegener M. Metamaterials beyond electromagnetism // Rep. Prog. Phys. 2013. V. 76. № 12. P. 1672–1681.
9. Ali M.Z. Properties of single and multiple defect modes in one-dimensional photonic crystals containing lefthanded metamaterials // Chin. Opt. Lett. 2012. V. 10. № 7. P. 071604–071604.

10. Chen Y., Fang Y., Huang S., Yan X., and Shi J. Surface Tamm states in one-dimensional photonic crystals containing anisotropic indefinite metamaterials // Chin. Opt. Lett. 2013. V. 11. № 6. P. 061602.
11. Tsu R. and Fiddy M.A. Generalization of the effects of high Q for metamaterials // Photon. Res. 2013. V. 1. № 2. P. 77–87.
12. Zhao J., Zhang H., Zhang X., Li D., Lu H., and Xu M. Abnormal behaviors of Goos-Hänchen shift in hyperbolic metamaterials made of aluminum zinc oxide materials // Photon. Res. 2013. V. 1. № 4. P. 160–163.
13. Chen H., Luo X., Ma H., and Chan C.T. The anti-cloak // Opt. Exp. 2008. V. 16. № 19. P. 14603–14608.
14. Castaldi G., Gallina I., Galdi V., Alù A., and Engheta N. Cloak/anti-cloak interactions // Opt. Exp. 2009. V. 17. № 5. P. 3101–3114.
15. Castaldi G., Gallina I., Galdi V., Alù A., and Engheta N. Analytical study of spherical cloak/anti-cloak interactions // Wave Motion. 2011. V. 48. № 6. P. 455–464.
16. Greenleaf A., Kurylev Y., Lassas M., and Uhlmann G. Cloaking a sensor via transformation optics // Phys. Rev. E. 2011. V. 83. № 1. P. 211–222.
17. Li L., Huo F., Zhang Y., Chen Y., and Liang C. Design of invisibility anti-cloak for two-dimensional arbitrary geometries // Opt. Exp. 2013. V. 21. № 8. P. 9422–9427.
18. Liu X., Zhang L., Zhou J., Shi J., Wang Z., and Liu D. Carpet anti-cloak based on transformation optics // Chin. Opt. Lett. 2014. V. 12. № 12. P. 100–103.
19. Zhao J., Wang D., Peng R., Hu Q., and Wang M. Watching outside while under a carpet cloak of invisibility // Phys. Rev. E. 2011. V. 84. № 4. P. 2091–2098.
20. Wang Z., Shen L., Chen J., Wang H., Yu F., and Chen H. Highly directional small-size antenna designed with homogeneous transformation optics // Intern. J. Antenn. Propag. 2014. V. 2014. № 1. P. 1–6.
21. Chen H. and Zheng B. Broadband polygonal invisibility cloak for visible light // Sci. Rep. 2012. V. 2. № 2. P. 723–727.
22. Wu Y., He C., Wang Y., Liu X., and Zhou J. Controlling the wave propagation through the medium designed by linear coordinate transformation // Eur. J. Phys. 2015. V. 36. № 1. P. 015006.